Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38535671

RESUMEN

Carbon nanomaterials are promising adsorbents for dye removal from wastewater also due to their possible surface functionalization that, in principle, can increase the adsorption rate and provide regeneration. To investigate the real advantages of functionalization, we synthesized and characterized through IR, TGA, TEM, XPS and DLS measurements a multi-walled carbon nanotube (MWCNT) derivative bearing benzenesulfonate groups (MWCNT-S). The obtained material demonstrated to have good dispersibility in water and better capability to adsorb methylene blue (MB) compared to the pristine MWCNT adsorbent. Adsorption kinetic studies showed a very fast process, with a constant significantly higher with respect not only to that of the unfunctionalized MWCNT adsorbent but also to those of widely used activated carbons. Moreover, the adsorption capacity of MWCNT-S is more than doubled with respect to that of the insoluble pristine MWCNT adsorbent, thanks to the dispersibility of the derivatives, providing a larger available surface, and to the possible electrostatic interactions between the cationic MB and the anionic sulfonate groups. Additionally, the reversibility of ionic interactions disclosed the possibility to release the adsorbed cationic pollutant through competition with salts, not only regenerating the adsorbent, but also recovering the dye. Indeed, by treating the adsorbed material for 1 h with 1 M NaCl, a regeneration capacity of 75% was obtained, demonstrating the validity of this strategy.

2.
ACS Appl Mater Interfaces ; 16(3): 3093-3105, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38206310

RESUMEN

As is known, carbon nanotubes favor cell growth in vitro, although the underlying mechanisms are not yet fully elucidated. In this study, we explore the hypothesis that electrostatic fields generated at the interface between nonexcitable cells and appropriate scaffold might favor cell growth by tuning their membrane potential. We focused on primary human fibroblasts grown on electrospun polymer fibers (poly(lactic acid)─PLA) with embedded multiwall carbon nanotubes (MWCNTs). The MWCNTs were functionalized with either the p-methoxyphenyl (PhOME) or the p-acetylphenyl (PhCOMe) moiety, both of which allowed uniform dispersion in a solvent, good mixing with PLA and the consequent smooth and homogeneous electrospinning process. The inclusion of the electrically conductive MWCNTs in the insulating PLA matrix resulted in differences in the surface potential of the fibers. Both PLA and PLA/MWCNT fiber samples were found to be biocompatible. The main features of fibroblasts cultured on different substrates were characterized by scanning electron microscopy, immunocytochemistry, Rt-qPCR, and electrophysiology revealing that fibroblasts grown on PLA/MWCNT reached a healthier state as compared to pure PLA. In particular, we observed physiological spreading, attachment, and Vmem of fibroblasts on PLA/MWCNT. Interestingly, the electrical functionalization of the scaffold resulted in a more suitable extracellular environment for the correct biofunctionality of these nonexcitable cells. Finally, numerical simulations were also performed in order to understand the mechanism behind the different cell behavior when grown either on PLA or PLA/MWCNT samples. The results show a clear effect on the cell membrane potential, depending on the underlying substrate.


Asunto(s)
Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Potenciales de la Membrana , Poliésteres/química , Polímeros/química , Fibroblastos
3.
Nanoscale ; 14(28): 10190-10199, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35796327

RESUMEN

The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.


Asunto(s)
Grafito , Pseudomonas aeruginosa , Biopelículas , Grafito/química , Grafito/farmacología , Monosacáridos
4.
ACS Appl Nano Mater ; 4(12): 14153-14160, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34970641

RESUMEN

The bioimaging of cancer cells by the specific targeting of overexpressed biomarkers is an approach that holds great promise in the identification of selective diagnostic tools. Tumor-associated human carbonic anhydrase (hCA) isoforms IX and XII have been considered so far as well-defined biomarkers, with their expression correlating with cancer progression and aggressiveness. Therefore, the availability of highly performant fluorescent tools tailored for their targeting and able to efficiently visualize such key targets is in high demand. We report here on the design and synthesis of a kind of quantum dot (QD)-based fluorescent glyconanoprobe coated with a binary mixture of ligands, which, according to the structure of the terminal domains, impart specific property sets to the fluorescent probe. Specifically, monosaccharide residues ensured the dispersibility in the biological medium, CA inhibitor residues provided specific targeting of membrane-anchored hCA IX overexpressed on bladder cancer cells, and the quantum dots imparted the optical/fluorescence properties.

5.
Molecules ; 26(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34500718

RESUMEN

This review presents an overview of the use of organic functionalized carbon nanostructures (CNSs) in solar energy conversion schemes. Our attention was focused in particular on the contribution of organic chemistry to the development of new hybrid materials that find application in dye-sensitized solar cells (DSSCs), organic photovoltaics (OPVs), and perovskite solar cells (PSCs), as well as in photocatalytic fuel production, focusing in particular on the most recent literature. The request for new materials able to accompany the green energy transition that are abundant, low-cost, low-toxicity, and made from renewable sources has further increased the interest in CNSs that meet all these requirements. The inclusion of an organic molecule, thanks to both covalent and non-covalent interactions, in a CNS leads to the development of a completely new hybrid material able of combining and improving the properties of both starting materials. In addition to the numerical data, which unequivocally state the positive effect of the new hybrid material, we hope that these examples can inspire further research in the field of photoactive materials from an organic point of view.

6.
Nanomaterials (Basel) ; 11(2)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562559

RESUMEN

Leading-edge regenerative medicine can take advantage of improved knowledge of key roles played, both in stem cell fate determination and in cell growth/differentiation, by mechano-transduction and other physicochemical stimuli from the tissue environment. This prompted advanced nanomaterials research to provide tissue engineers with next-generation scaffolds consisting of smart nanocomposites and/or hydrogels with nanofillers, where balanced combinations of specific matrices and nanomaterials can mediate and finely tune such stimuli and cues. In this review, we focus on graphene-based nanomaterials as, in addition to modulating nanotopography, elastic modulus and viscoelastic features of the scaffold, they can also regulate its conductivity. This feature is crucial to the determination and differentiation of some cell lineages and is of special interest to neural regenerative medicine. Hereafter we depict relevant properties of such nanofillers, illustrate how problems related to their eventual cytotoxicity are solved via enhanced synthesis, purification and derivatization protocols, and finally provide examples of successful applications in regenerative medicine on a number of tissues.

7.
Nanomaterials (Basel) ; 10(3)2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120984

RESUMEN

Nanocomposite scaffolds combining carbon nanomaterials (CNMs) with a biocompatible matrix are able to favor the neuronal differentiation and growth of a number of cell types, because they mimic neural-tissue nanotopography and/or conductivity. We performed comparative analysis of biomimetic scaffolds with poly-L-lactic acid (PLLA) matrix and three different p-methoxyphenyl functionalized carbon nanofillers, namely, carbon nanotubes (CNTs), carbon nanohorns (CNHs), and reduced graphene oxide (RGO), dispersed at varying concentrations. qRT-PCR analysis of the modulation of neuronal markers in human circulating multipotent cells cultured on nanocomposite scaffolds showed high variability in their expression patterns depending on the scaffolds' inhomogeneities. Local stimuli variation could result in a multi- to oligopotency shift and commitment towards multiple cell lineages, which was assessed by the qRT-PCR profiling of markers for neural, adipogenic, and myogenic cell lineages. Less conductive scaffolds, i.e., bare poly-L-lactic acid (PLLA)-, CNH-, and RGO-based nanocomposites, appeared to boost the expression of myogenic-lineage marker genes. Moreover, scaffolds are much more effective on early commitment than in subsequent differentiation. This work suggests that biomimetic PLLA carbon-nanomaterial (PLLA-CNM) scaffolds combined with multipotent autologous cells can represent a powerful tool in the regenerative medicine of multiple tissue types, opening the route to next analyses with specific and standardized scaffold features.

8.
J Nanosci Nanotechnol ; 18(2): 1006-1018, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448526

RESUMEN

Composites of multi-walled carbon nanotubes (MWCNTs) and poly(3,4-ethylenedioxythiophene) (PEDOT) are attracting the attention of material scientists since more than a decade as potential next-generation optoelectronic materials for their peculiar features, arising from the combination of the intrinsic electrical, thermal and morphological properties of the two components. They are indeed a promising platform for the development of low-cost, portable and environmentally friendly electronic devices such as supercapacitors, sensors and actuators. Here a novel synthetic strategy for their preparation is envisaged, exploiting the possibility to covalently functionalize the external surface of MWCNTs with tailored molecular units, starting from which the growth of the conjugated polymer can be induced oxidatively. The approach demonstrates its value in being able to effectively promote the formation of PEDOT chains in direct contact with the surface of MWCNTs, differently from what results when the monomer is polymerized in the presence of the pristine carbon nanomaterial. In addition, significant differences are found in the physico-chemical properties and electrochemical behavior when MWCNT-PEDOT covalent composites are studied in comparison to a non-covalent analogue, here illustrated in detail. These evidences constitute a starting point for the future development of novel more finely tuned functional materials based on MWCNT-PEDOT composites, featuring the required optoelectronic properties to precisely target the desired application.

9.
Phys Chem Chem Phys ; 19(40): 27716-27724, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28984327

RESUMEN

We investigated the photophysical properties of a newly synthesized hybrid material composed of a triphenylamine dye covalently bound to reduced graphene oxide, potentially relevant as a stable photosensitizer in dye-sensitized solar cells. The photophysical characterization has been carried out by means of fluorescence quenching and fluorescence lifetime measurements, complemented by Electron Paramagnetic Resonance (EPR) spectroscopy, aimed at the detailed description of the photoinduced processes occurring in the hybrid and in the mixed hybrid/N-doped TiO2 material. The combined optical/magnetic study unequivocally demonstrates a fast quenching of the dye excited state in the isolated hybrid and an efficient electron transfer to N-doped titania nanopowders. In the latter case, a metastable radical cation on the dye moiety is photogenerated and the corresponding negative charge, an electron, is trapped in defect sites of the doped semiconductor oxide. The spin distribution in the stable radical has been determined by EPR spectroscopy and correlated with DFT calculations.

10.
Nanomedicine (Lond) ; 11(15): 1929-46, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27246559

RESUMEN

AIM: We aimed to set up a self-standing, biomimetic scaffold system able to induce and support per se neuronal differentiation of autologous multipotent cells. MATERIALS & METHODS: We isolated a population of human circulating multipotent cells (hCMCs), and used carbon nanotube/polymer nanocomposite scaffolds to mimic electrical/nanotopographical features of the neural environment, and biomimetic peptides reproducing axon guidance cues from neural proteins. RESULTS: hCMCs showed high degree of stemness and multidifferentiative potential; stimuli from the scaffolds and biomimetic peptides could induce and boost hCMC differentiation toward neuronal lineage despite the absence of exogenously added, specific growth factors. CONCLUSION: This work suggests the scaffold-peptides system combined with autologous hCMCs as a functional biomimetic, self-standing prototype for neural regenerative medicine applications.


Asunto(s)
Células Madre Adultas/citología , Materiales Biomiméticos/química , Células Madre Multipotentes/citología , Nanotubos de Carbono/química , Neuronas/citología , Péptidos/química , Poliésteres/química , Andamios del Tejido/química , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Medicina Regenerativa , Ingeniería de Tejidos
11.
Nanomedicine ; 11(3): 621-32, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25546847

RESUMEN

Carbon nanotubes are attractive candidates for the development of scaffolds able to support neuronal growth and differentiation thanks to their ability to conduct electrical stimuli, to interface with cells and to mimic the neural environment. We developed a biocompatible composite scaffold, consisting of multi-walled carbon nanotubes dispersed in a poly-L-lactic acid matrix able to support growth and differentiation of human neuronal cells. Moreover, to mimic guidance cues from the neural environment, we also designed synthetic peptides, derived from L1 and LINGO1 proteins. Such peptides could positively modulate neuronal differentiation, which is synergistically improved by the combination of the nanocomposite scaffold and the peptides, thus suggesting a prototype for the development of implants for long-term neuronal growth and differentiation. From the clinical editor: The study describes the design and preparation of nanocomposite scaffolds with multi-walled carbon nanotubes in a poly-L-lactic acid matrix. This compound used in combination with peptides leads to synergistic effects in supporting neuronal cell growth and differentiation.


Asunto(s)
Materiales Biomiméticos , Diferenciación Celular/efectos de los fármacos , Nanotubos de Carbono/química , Neuronas/metabolismo , Péptidos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Línea Celular , Humanos , Ácido Láctico/química , Ácido Láctico/farmacología , Proteínas de la Membrana/química , Proteínas de la Membrana/farmacología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/farmacología , Neuronas/citología , Péptidos/química , Péptidos/farmacología , Poliésteres , Polímeros/química , Polímeros/farmacología
12.
Chem Commun (Camb) ; 49(73): 8048-50, 2013 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-23903704

RESUMEN

A novel aldehyde-bearing trithiocarbonate has been synthesized and reacted with carbon nanostructures with different dimensionalities (nanotubes, fullerenes, graphite). The decoration of these carbon nanostructures with trithiocarbonate moieties should provide a powerful tool for the design of advanced carbon nanofillers.

13.
J Phys Chem Lett ; 4(16): 2664-2667, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23991266

RESUMEN

Nanopeapods, consisting of optically active π-conjugated molecules encapsulated inside of the cavity of carbon nanotubes, exhibit efficient photon emission in the visible spectral range. Combining optical experiments with ab initio theory, we show that the puzzling features observed in photoluminescence spectra are of excitonic nature. The subunits though being van der Waals bound are demonstrated to interact in the excited state, giving rise to the formation of hybrid excitons. We rationalize why this many-body effect makes such nanohybrids useful for optoelectronic devices.

14.
Chem Commun (Camb) ; 47(32): 9092-4, 2011 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-21727961

RESUMEN

This communication demonstrates a straightforward continuous-flow method for efficient exohedral functionalisation of carbon nanotubes which affords soluble samples in a much shorter time over conventional batch processing.

15.
Small ; 7(13): 1807-15, 2011 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-21548083

RESUMEN

One of the most challenging strategies to achieve tunable nanophotonic devices is to build robust nanohybrids with variable emission in the visible spectral range, while keeping the merits of pristine single-walled carbon nanotubes (SWNTs). This goal is realized by filling SWNTs ("pods") with a series of oligothiophene molecules ("peas"). The physical properties of these peapods are depicted by using aberration-corrected high-resolution transmission electron microscopy, Raman spectroscopy, and other optical methods including steady-state and time-resolved measurements. Visible photoluminescence with quantum yields up to 30% is observed for all the hybrids. The underlying electronic structure is investigated by density functional theory calculations for a series of peapods with different molecular lengths and tube diameters, which demonstrate that van der Waals interactions are the bonding mechanism between the encapsulated molecule and the tube.


Asunto(s)
Nanotubos de Carbono/química , Tiofenos/química , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Espectrometría Raman/métodos
17.
Small ; 4(3): 350-6, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18228238

RESUMEN

A fulleropyrrolidine bearing a nitroxide free radical has been inserted into single-walled carbon nanotubes with the aid of supercritical CO2. Thanks to the encapsulated paramagnetic probes, it has been possible to detect and characterize the resulting peapod-like structure through electron paramagnetic resonance (EPR) spectroscopy. In particular, the analysis of spectral parameters derived from extensive EPR studies has elucidated the orientation and the residual rotational dynamics of the molecules embedded in the nanotubes. A limited anisotropic rotational freedom of the encapsulated fullerene nitroxide reveals a rather strong interaction of the probe with the surrounding nanotube walls. The interaction seems to involve the fullerene cage (as confirmed by Raman spectroscopy) and not the nitroxide moiety, whose EPR spectral characteristics, such as the isotropic hyperfine constant and the g-tensor, remain unaltered after encapsulation.


Asunto(s)
Fulerenos/química , Nanotubos de Carbono , Óxidos de Nitrógeno/química , Cromatografía con Fluido Supercrítico , Espectroscopía de Resonancia por Spin del Electrón , Microscopía Electrónica de Transmisión , Sondas Moleculares , Espectrometría Raman
18.
Phys Chem Chem Phys ; 9(5): 616-21, 2007 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-17242743

RESUMEN

Functionalized distyrylbenzene analogs and , bearing a tris-(2-pyridylmethyl)amine-based receptor for Zn(2+), were synthesized by a Horner-Emmons-Wittig coupling reaction. It has been found that Zn(2+) complexation induces changes in the linear absorption spectrum that enhance a nonlinear sequential two-photon absorption of nanosecond pulses at 532 nm. This absorption was also found to depend on the nature of the substituent at the side benzene ring of the styrylbenzene structure.


Asunto(s)
Derivados del Benceno/síntesis química , Compuestos Organometálicos/química , Estirenos/química , Zinc/química , Derivados del Benceno/química , Estructura Molecular , Fotones
19.
Photochem Photobiol Sci ; 5(12): 1154-64, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17136282

RESUMEN

A cyclopropanation reaction has been used to prepare two methanofullerenes bearing a 2,2'-bipyridine () or pyridine () ligand separated from the fullerene through an oxyethylene macrocyclic spacer. Derivatives and were, in turn, employed to synthesize two fullerene-based ruthenium(ii) and rhenium(i) donor-acceptor dyads whose molecular structure was confirmed by (1)H NMR, (13)C NMR and exact mass determination. The UV-Vis spectrum of the dyads is the superimposition of those of appropriate model systems, indicating that ground-state electronic interactions between the constituent chromophores, in solution, are negligible, in line also with the electrochemical results. The complex voltammetric pattern was characterized by the superimposition of signals attributed to one moiety or another without significant shifts with respect to their models. Furthermore, both species undergo partial chemical degradation in the time scale of cyclic voltammetry upon their multiple reduction. Photophysical properties of and , namely, excited state interactions between the ruthenium(ii) or rhenium(i) complexes and [60]fullerene have been investigated by steady-state and time-resolved UV-Vis-NIR luminescence spectroscopy that was complemented by nanosecond laser flash photolysis in CH(2)Cl(2) solutions. All experimental findings were set into relation with the corresponding reference compounds. More precisely, excitation of the metal complexes in and gives rise to a notable steady-state and time-resolved luminescence quenching of both metal to ligand charge transfer states (i.e., [Ru(bpy)(3)](2+) and [(bpy)Re(CO)(3)(py)](+)). Conclusive evidence about the nature of the photoproducts came from nanosecond laser flash photolysis. In these experiments, only the long-lived and oxygen-sensitive [60]fullerene triplets were detected. Two pathways are envisioned for this [60]fullerene triplet formation. Firstly, intramolecular transduction of the triplet excited state energy evolving from the photoexcited metal complexes. Secondly, intersystem crossing of directly excited [60]fullerene.

20.
J Phys Chem A ; 110(20): 6459-64, 2006 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-16706402

RESUMEN

This paper presents the synthesis and two photon-induced absorption (TPA) properties of a functionalized distyrylbenzene (DSB) 1 containing a tetra-azacyclododecane (cyclen) receptor for Zn(II). The influence of Zn(II) on one- and two-photon absorption characteristics of 1 has been investigated in dimethyl sulfoxide. The experiments show that the TPA action spectrum of uncomplexed 1, at 750 nm employing nanosecond-long excitation pulses, is 5 times more intense than that of the complexed form. This moderate contrast between the bound and unbound species confirms, however, the potential of this design scheme for the development of molecular structures with enhanced sensitivity and contrast to be used as Zn(II) sensors through TPA-induced fluorescence microscopy.


Asunto(s)
Colorantes Fluorescentes/química , Compuestos Organometálicos/química , Fotones , Zinc/química , Absorción , Derivados del Benceno/química , Cationes Bivalentes , Ciclamas , Compuestos Heterocíclicos/química , Microscopía Fluorescente , Modelos Químicos , Espectrofotometría Ultravioleta , Estirenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...