Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 6086, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667172

RESUMEN

Unregulated complement activation causes inflammatory and immunological pathologies with consequences for human disease. To prevent bystander damage during an immune response, extracellular chaperones (clusterin and vitronectin) capture and clear soluble precursors to the membrane attack complex (sMAC). However, how these chaperones block further polymerization of MAC and prevent the complex from binding target membranes remains unclear. Here, we address that question by combining cryo electron microscopy (cryoEM) and cross-linking mass spectrometry (XL-MS) to solve the structure of sMAC. Together our data reveal how clusterin recognizes and inhibits polymerizing complement proteins by binding a negatively charged surface of sMAC. Furthermore, we show that the pore-forming C9 protein is trapped in an intermediate conformation whereby only one of its two transmembrane ß-hairpins has unfurled. This structure provides molecular details for immune pore formation and helps explain a complement control mechanism that has potential implications for how cell clearance pathways mediate immune homeostasis.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/química , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Complemento C8/química , Complemento C8/metabolismo , Complemento C9/química , Complemento C9/inmunología , Microscopía por Crioelectrón , Humanos , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos
2.
Elife ; 102021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34590583

RESUMEN

Pentameric ligand-gated ion channels (pLGICs) mediate chemical signaling through a succession of allosteric transitions that are yet not completely understood as intermediate states remain poorly characterized by structural approaches. In a previous study on the prototypic bacterial proton-gated channel GLIC, we generated several fluorescent sensors of the protein conformation that report a fast transition to a pre-active state, which precedes the slower process of activation with pore opening. Here, we explored the phenotype of a series of allosteric mutations, using simultaneous steady-state fluorescence and electrophysiological measurements over a broad pH range. Our data, fitted to a three-state Monod-Wyman-Changeux model, show that mutations at the subunit interface in the extracellular domain (ECD) principally alter pre-activation, while mutations in the lower ECD and in the transmembrane domain principally alter activation. We also show that propofol alters both transitions. Data are discussed in the framework of transition pathways generated by normal mode analysis (iModFit). It further supports that pre-activation involves major quaternary compaction of the ECD, and suggests that activation involves principally a reorganization of a 'central gating region' involving a contraction of the ECD ß-sandwich and the tilt of the channel lining M2 helix.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Análisis Mutacional de ADN , Activación del Canal Iónico , Canales Iónicos Activados por Ligandos/metabolismo , Mutación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cianobacterias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/genética , Modelos Biológicos , Simulación del Acoplamiento Molecular , Conformación Proteica , Relación Estructura-Actividad , Factores de Tiempo
3.
Nat Commun ; 10(1): 2066, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061395

RESUMEN

The membrane attack complex (MAC) is a hetero-oligomeric protein assembly that kills pathogens by perforating their cell envelopes. The MAC is formed by sequential assembly of soluble complement proteins C5b, C6, C7, C8 and C9, but little is known about the rate-limiting steps in this process. Here, we use rapid atomic force microscopy (AFM) imaging to show that MAC proteins oligomerize within the membrane, unlike structurally homologous bacterial pore-forming toxins. C5b-7 interacts with the lipid bilayer prior to recruiting C8. We discover that incorporation of the first C9 is the kinetic bottleneck of MAC formation, after which rapid C9 oligomerization completes the pore. This defines the kinetic basis for MAC assembly and provides insight into how human cells are protected from bystander damage by the cell surface receptor CD59, which is offered a maximum temporal window to halt the assembly at the point of C9 insertion.


Asunto(s)
Antígenos CD59/metabolismo , Membrana Celular/ultraestructura , Complemento C9/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Multimerización de Proteína , Membrana Celular/metabolismo , Complemento C5/metabolismo , Complemento C8/metabolismo , Humanos , Cinética , Microscopía de Fuerza Atómica/métodos , Imagen Individual de Molécula/métodos
4.
Nat Commun ; 9(1): 5316, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30552328

RESUMEN

The membrane attack complex (MAC) is one of the immune system's first responders. Complement proteins assemble on target membranes to form pores that lyse pathogens and impact tissue homeostasis of self-cells. How MAC disrupts the membrane barrier remains unclear. Here we use electron cryo-microscopy and flicker spectroscopy to show that MAC interacts with lipid bilayers in two distinct ways. Whereas C6 and C7 associate with the outer leaflet and reduce the energy for membrane bending, C8 and C9 traverse the bilayer increasing membrane rigidity. CryoEM reconstructions reveal plasticity of the MAC pore and demonstrate how C5b6 acts as a platform, directing assembly of a giant ß-barrel whose structure is supported by a glycan scaffold. Our work provides a structural basis for understanding how ß-pore forming proteins breach the membrane and reveals a mechanism for how MAC kills pathogens and regulates cell functions.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/química , Complejo de Ataque a Membrana del Sistema Complemento/ultraestructura , Microscopía por Crioelectrón/métodos , Membrana Dobles de Lípidos/química , Complemento C6/química , Complemento C6/metabolismo , Complemento C6/ultraestructura , Complemento C7/química , Complemento C7/metabolismo , Complemento C7/ultraestructura , Complemento C8/química , Complemento C8/metabolismo , Complemento C8/ultraestructura , Complemento C9/química , Complemento C9/metabolismo , Complemento C9/ultraestructura , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Membrana Dobles de Lípidos/metabolismo , Liposomas , Modelos Moleculares , Polisacáridos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Análisis Espectral/métodos
5.
Proc Natl Acad Sci U S A ; 115(52): E12172-E12181, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30541892

RESUMEN

The pentameric ligand-gated ion channel (pLGIC) from Gloeobacter violaceus (GLIC) has provided insightful structure-function views on the permeation process and the allosteric regulation of the pLGICs family. However, GLIC is activated by pH instead of a neurotransmitter and a clear picture for the gating transition driven by protons is still lacking. We used an electrostatics-based (finite difference Poisson-Boltzmann/Debye-Hückel) method to predict the acidities of all aspartic and glutamic residues in GLIC, both in its active and closed-channel states. Those residues with a predicted pKa close to the experimental pH50 were individually replaced by alanine and the resulting variant receptors were titrated by ATR/FTIR spectroscopy. E35, located in front of loop F far away from the orthosteric site, appears as the key proton sensor with a measured individual pKa at 5.8. In the GLIC open conformation, E35 is connected through a water-mediated hydrogen-bond network first to the highly conserved electrostatic triad R192-D122-D32 and then to Y197-Y119-K248, both located at the extracellular domain-transmembrane domain interface. The second triad controls a cluster of hydrophobic side chains from the M2-M3 loop that is remodeled during the gating transition. We solved 12 crystal structures of GLIC mutants, 6 of them being trapped in an agonist-bound but nonconductive conformation. Combined with previous data, this reveals two branches of a continuous network originating from E35 that reach, independently, the middle transmembrane region of two adjacent subunits. We conclude that GLIC's gating proceeds by making use of loop F, already known as an allosteric site in other pLGICs, instead of the classic orthosteric site.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/metabolismo , Proteínas Bacterianas/genética , Cianobacterias/química , Cianobacterias/genética , Cinética , Canales Iónicos Activados por Ligandos/genética , Modelos Moleculares , Dominios Proteicos , Protones , Electricidad Estática
6.
Elife ; 62017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28294942

RESUMEN

Pentameric ligand-gated ion channels (pLGICs) mediate fast chemical signaling through global allosteric transitions. Despite the existence of several high-resolution structures of pLGICs, their dynamical properties remain elusive. Using the proton-gated channel GLIC, we engineered multiple fluorescent reporters, each incorporating a bimane and a tryptophan/tyrosine, whose close distance causes fluorescence quenching. We show that proton application causes a global compaction of the extracellular subunit interface, coupled to an outward motion of the M2-M3 loop near the channel gate. These movements are highly similar in lipid vesicles and detergent micelles. These reorganizations are essentially completed within 2 ms and occur without channel opening at low proton concentration, indicating that they report a pre-active intermediate state in the transition pathway toward activation. This provides a template to investigate the gating of eukaryotic neurotransmitter receptors, for which intermediate states also participate in activation.


Asunto(s)
Proteínas Bacterianas/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Cianobacterias/química , Canales Iónicos Activados por Ligandos/química , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Cianobacterias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Expresión Génica , Concentración de Iones de Hidrógeno , Cinética , Canales Iónicos Activados por Ligandos/genética , Canales Iónicos Activados por Ligandos/metabolismo , Potenciales de la Membrana/fisiología , Modelos Moleculares , Mutación , Oocitos/citología , Oocitos/metabolismo , Técnicas de Placa-Clamp , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coloración y Etiquetado/métodos , Xenopus laevis
7.
Neuron ; 90(3): 452-70, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27151638

RESUMEN

Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors.


Asunto(s)
Fenómenos Biofísicos/fisiología , Activación del Canal Iónico/fisiología , Canales Iónicos Activados por Ligandos/metabolismo , Receptores de Glicina/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Modelos Moleculares
8.
J Cell Sci ; 128(18): 3420-34, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26220855

RESUMEN

The obligate intracellular bacterial pathogen Chlamydia trachomatis deploys virulence effectors to subvert host cell functions enabling its replication within a specialized membrane-bound compartment termed an inclusion. The control of the host cytoskeleton is crucial for Chlamydia uptake, inclusion biogenesis and cell exit. Here, we demonstrate how a Chlamydia effector rearranges the microtubule (MT) network by initiating organization of the MTs at the inclusion surface. We identified an inclusion-localized effector that is sufficient to interfere with MT assembly, which we named inclusion protein acting on MTs (IPAM). We established that IPAM recruits and stimulates the centrosomal protein 170 kDa (CEP170) to hijack the MT organizing functions of the host cell. We show that CEP170 is essential for chlamydial control of host MT assembly, and is required for inclusion morphogenesis and bacterial infectivity. Together, we demonstrate how a pathogen effector reprograms the host MT network to support its intracellular development.


Asunto(s)
Chlamydia trachomatis , Interacciones Huésped-Patógeno , Cuerpos de Inclusión/microbiología , Microtúbulos/patología , Fosfoproteínas/metabolismo , Infecciones por Chlamydia/metabolismo , Infecciones por Chlamydia/patología , Citoesqueleto/patología , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos
9.
Proc Natl Acad Sci U S A ; 111(3): 966-71, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24367074

RESUMEN

Pentameric ligand-gated ion channels mediate fast chemical transmission of nerve signals. The structure of a bacterial proton-gated homolog has been established in its open and locally closed conformations at acidic pH. Here we report its crystal structure at neutral pH, thereby providing the X-ray structures of the two end-points of the gating mechanism in the same pentameric ligand-gated ion channel. The large structural variability in the neutral pH structure observed in the four copies of the pentamer present in the asymmetric unit has been used to analyze the intrinsic fluctuations in this state, which are found to prefigure the transition to the open state. In the extracellular domain (ECD), a marked quaternary change is observed, involving both a twist and a blooming motion, and the pore in the transmembrane domain (TMD) is closed by an upper bend of helix M2 (as in locally closed form) and a kink of helix M1, both helices no longer interacting across adjacent subunits. On the tertiary level, detachment of inner and outer ß sheets in the ECD reshapes two essential cavities at the ECD-ECD and ECD-TMD interfaces. The first one is the ligand-binding cavity; the other is close to a known divalent cation binding site in other pentameric ligand-gated ion channels. In addition, a different crystal form reveals that the locally closed and open conformations coexist as discrete ones at acidic pH. These structural results, together with site-directed mutagenesis, physiological recordings, and coarse-grained modeling, have been integrated to propose a model of the gating transition pathway.


Asunto(s)
Cristalografía por Rayos X , Cianobacterias/metabolismo , Canales Iónicos Activados por Ligandos/química , Sitio Alostérico , Animales , Sitios de Unión , Cationes , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Canales Iónicos/química , Ligandos , Modelos Moleculares , Oocitos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Transducción de Señal , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA