Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 15(4): e0335723, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38445877

RESUMEN

Bacterial pathogens use protein secretion systems to transport virulence factors and regulate gene expression. Among pathogenic mycobacteria, including Mycobacterium tuberculosis and Mycobacterium marinum, the ESAT-6 system 1 (ESX-1) secretion is crucial for host interaction. Secretion of protein substrates by the ESX-1 secretion system disrupts phagosomes, allowing mycobacteria cytoplasmic access during macrophage infections. Deletion or mutation of the ESX-1 system attenuates mycobacterial pathogens. Pathogenic mycobacteria respond to the presence or absence of the ESX-1 system in the cytoplasmic membrane by altering transcription. Under laboratory conditions, the EspM repressor and WhiB6 activator control transcription of specific ESX-1-responsive genes, including the ESX-1 substrate genes. However, deleting the espM or whiB6 gene does not phenocopy the deletion of the ESX-1 substrate genes during macrophage infection by M. marinum. In this study, we identified EspN, a critical transcription factor whose activity is masked by the EspM repressor under laboratory conditions. In the absence of EspM, EspN activates transcription of whiB6 and ESX-1 genes during both laboratory growth and macrophage infection. EspN is also independently required for M. marinum growth within and cytolysis of macrophages, similar to the ESX-1 genes, and for disease burden in a zebrafish larval model of infection. These findings suggest that EspN and EspM coordinate to counterbalance the regulation of the ESX-1 system and support mycobacterial pathogenesis.IMPORTANCEPathogenic mycobacteria, which are responsible for tuberculosis and other long-term diseases, use the ESX-1 system to transport proteins that control the host response to infection and promote bacterial survival. In this study, we identify an undescribed transcription factor that controls the expression of ESX-1 genes and is required for both macrophage and animal infection. However, this transcription factor is not the primary regulator of ESX-1 genes under standard laboratory conditions. These findings identify a critical transcription factor that likely controls expression of a major virulence pathway during infection, but whose effect is not detectable with standard laboratory strains and growth conditions.


Asunto(s)
Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculosis , Sistemas de Secreción Tipo VII , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VII/genética , Sistemas de Secreción Tipo VII/metabolismo , Pez Cebra , Tuberculosis/microbiología , Mycobacterium tuberculosis/metabolismo , Mycobacterium marinum/metabolismo
2.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824794

RESUMEN

Bacterial pathogens use protein secretion systems to translocate virulence factors into the host and to control bacterial gene expression. The ESX-1 (ESAT-6 system 1) secretion system facilitates disruption of the macrophage phagosome during infection, enabling access to the cytoplasm, and regulates widespread gene expression in the mycobacterial cell. The transcription factors contributing to the ESX-1 transcriptional network during mycobacterial infection are not known. We showed that the EspM and WhiB6 transcription factors regulate the ESX-1 transcriptional network in vitro but are dispensable for macrophage infection by Mycobacterium marinum . In this study, we used our understanding of the ESX-1 system to identify EspN, a critical transcription factor that controls expression of the ESX-1 genes during infection, but whose effect is not detectable under standard laboratory growth conditions. Under laboratory conditions, EspN activity is masked by the EspM repressor. In the absence of EspM, we found that EspN is required for ESX-1 function because it activates expression of the whiB6 transcription factor gene, and specific ESX-1 substrate and secretory component genes. Unlike the other transcription factors that regulate ESX-1, EspN is required for M. marinum growth within and cytolysis of macrophages, and for disease burden in a zebrafish larval model of infection. These findings demonstrate that EspN is an infection-dependent regulator of the ESX-1 transcriptional network, which is essential for mycobacterial pathogenesis. Moreover, our findings suggest that ESX-1 expression is controlled by a genetic switch that responds to host specific signals. Importance: Pathogenic mycobacteria cause acute and long-term diseases, including human tuberculosis. The ESX-1 system transports proteins that control the host response to infection and promotes bacterial survival. Although ESX-1 transports proteins, it also controls gene expression in the bacteria. In this study, we identify an undescribed transcription factor that controls the expression of ESX-1 genes, and is required for both macrophage and animal infection. However, this transcription factor is not the primary regulator of ESX-1 genes under standard laboratory conditions. These findings identify a critical transcription factor that controls expression of a major virulence pathway during infection, but whose effect is not detectable with standard laboratory strains and growth conditions.

3.
Environ Sci Technol ; 54(24): 16119-16127, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33253556

RESUMEN

Sulfide accumulation in oil reservoir fluids (souring) from the activity of sulfate-reducing microorganisms (SRM) is of grave concern because of the associated health and facility failure risks. Here, we present an assessment of tungstate as a selective and potent inhibitor of SRM. Dose-response inhibitor experiments were conducted with a number of SRM isolates and enrichments at 30-80 °C and an increase in the effectiveness of tungstate treatment at higher temperatures was observed. To explore mixed inhibitor treatment modes, we tested synergy or antagonism between several inhibitors with tungstate, and found synergism between WO42- and NO2-, while additive effects were observed with ClO4- and NO3-. We also evaluated SRM inhibition by tungstate in advective upflow oil-sand-packed columns. Although 2 mM tungstate was initially sufficient to inhibit sulfidogenesis, subsequent temporal CaWO4 precipitation resulted in loss of the bioavailable inhibitor from solution and a concurrent increase in effluent sulfide. Mixing 4 mM sodium carbonate with the 2 mM tungstate was enough to promote tungstate solubility to reach inhibitory concentrations, without precipitation, and completely inhibit SRM activity. Overall, we demonstrate the effectiveness of tungstate as a potent SRM inhibitor, particularly at higher temperatures, and propose a novel carbonate-tungstate formulation for application to soured oil reservoirs.


Asunto(s)
Sulfatos , Compuestos de Tungsteno , Yacimiento de Petróleo y Gas , Sulfuros
4.
Mol Biol Evol ; 36(10): 2105-2110, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31236589

RESUMEN

Horizontal gene transfer events have played a major role in the evolution of microbial species, but their importance in animals is less clear. Here, we report horizontal gene transfer of cytolethal distending toxin B (cdtB), prokaryotic genes encoding eukaryote-targeting DNase I toxins, into the genomes of vinegar flies (Diptera: Drosophilidae) and aphids (Hemiptera: Aphididae). We found insect-encoded cdtB genes are most closely related to orthologs from bacteriophage that infect Candidatus Hamiltonella defensa, a bacterial mutualistic symbiont of aphids that confers resistance to parasitoid wasps. In drosophilids, cdtB orthologs are highly expressed during the parasitoid-prone larval stage and encode a protein with ancestral DNase activity. We show that cdtB has been domesticated by diverse insects and hypothesize that it functions in defense against their natural enemies.


Asunto(s)
Áfidos/genética , Toxinas Bacterianas/genética , Drosophila/genética , Transferencia de Gen Horizontal , Secuencia de Aminoácidos , Animales , Áfidos/microbiología , Desoxirribonucleasas/genética , Drosophila/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...