Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Invest Ophthalmol Vis Sci ; 59(11): 4362-4374, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30193308

RESUMEN

Purpose: Glutathione-S-transferase omega 1-1 (GSTO1-1) is a cytosolic glutathione transferase enzyme, involved in glutathionylation, toll-like receptor signaling, and calcium channel regulation. GSTO1-1 dysregulation has been implicated in oxidative stress and inflammation, and contributes to the pathogenesis of several diseases and neurological disorders; however, its role in retinal degenerations is unknown. The aim of this study was to investigate the role of GSTO1-1 in modulating oxidative stress and consequent inflammation in the normal and degenerating retina. Methods: The role of GSTO1-1 in retinal degenerations was explored by using Gsto1-/- mice in a model of retinal degeneration. The expression and localization of GSTO1-1 were investigated with immunohistochemistry and Western blot. Changes in the expression of inflammatory (Ccl2, Il-1ß, and C3) and oxidative stress (Nox1, Sod2, Gpx3, Hmox1, Nrf2, and Nqo1) genes were investigated via quantitative real-time polymerase chain reaction. Retinal function in Gsto1-/- mice was investigated by using electroretinography. Results: GSTO1-1 was localized to the inner segment of cone photoreceptors in the retina. Gsto1-/- photo-oxidative damage (PD) mice had decreased photoreceptor cell death as well as decreased expression of inflammatory (Ccl2, Il-1ß, and C3) markers and oxidative stress marker Nqo1. Further, retinal function in the Gsto1-/- PD mice was increased as compared to wild-type PD mice. Conclusions: These results indicate that GSTO1-1 is required for inflammatory-mediated photoreceptor death in retinal degenerations. Targeting GSTO1-1 may be a useful strategy to reduce oxidative stress and inflammation and ameliorate photoreceptor loss, slowing the progression of retinal degenerations.


Asunto(s)
Proteínas Portadoras/fisiología , Modelos Animales de Enfermedad , Glutatión Transferasa/fisiología , Células Fotorreceptoras/fisiología , Degeneración Retiniana/metabolismo , Animales , Biomarcadores/metabolismo , Western Blotting , Supervivencia Celular/fisiología , Complemento C3/genética , Citocinas/genética , Electrorretinografía , Femenino , Marcadores Genéticos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/metabolismo , Retina/fisiopatología , Degeneración Retiniana/fisiopatología
2.
Proc Natl Acad Sci U S A ; 115(36): E8460-E8468, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30127006

RESUMEN

A variety of innate immune responses and functions are dependent on time of day, and many inflammatory conditions are associated with dysfunctional molecular clocks within immune cells. However, the functional importance of these innate immune clocks has yet to be fully characterized. NRF2 plays a critical role in the innate immune system, limiting inflammation via reactive oxygen species (ROS) suppression and direct repression of the proinflammatory cytokines, IL-1ß and IL-6. Here we reveal that the core molecular clock protein, BMAL1, controls the mRNA expression of Nrf2 via direct E-box binding to its promoter to regulate its activity. Deletion of Bmal1 decreased the response of NRF2 to LPS challenge, resulting in a blunted antioxidant response and reduced synthesis of glutathione. ROS accumulation was increased in Bmal1-/- macrophages, facilitating accumulation of the hypoxic response protein, HIF-1α. Increased ROS and HIF-1α levels, as well as decreased activity of NRF2 in cells lacking BMAL1, resulted in increased production of the proinflammatory cytokine, IL-1ß. The excessive prooxidant and proinflammatory phenotype of Bmal1-/- macrophages was rescued by genetic and pharmacological activation of NRF2, or through addition of antioxidants. Our findings uncover a clear role for the molecular clock in regulating NRF2 in innate immune cells to control the inflammatory response. These findings provide insights into the pathology of inflammatory conditions, in which the molecular clock, oxidative stress, and IL-1ß are known to play a role.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Factores de Transcripción ARNTL/genética , Animales , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Interleucina-1beta/genética , Lipopolisacáridos/toxicidad , Macrófagos/patología , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno/metabolismo
3.
Nature ; 556(7699): 113-117, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29590092

RESUMEN

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.


Asunto(s)
Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/metabolismo , Succinatos/metabolismo , Alquilación , Animales , Carboxiliasas , Bovinos , Cisteína/química , Cisteína/metabolismo , Citocinas/biosíntesis , Citocinas/inmunología , Retroalimentación Fisiológica , Femenino , Células HEK293 , Humanos , Hidroliasas/biosíntesis , Interferón beta/inmunología , Interferón beta/farmacología , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Proteínas/metabolismo , Ratas , Ratas Wistar , Succinatos/química
4.
Sci Rep ; 7(1): 17832, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259211

RESUMEN

Glutathione transferase Omega 1 (GSTO1-1) is an atypical GST reported to play a pro-inflammatory role in response to LPS. Here we show that genetic knockout of Gsto1 alters the response of mice to three distinct inflammatory disease models. GSTO1-1 deficiency ameliorates the inflammatory response stimulated by LPS and attenuates the inflammatory impact of a high fat diet on glucose tolerance and insulin resistance. In contrast, GSTO1-1 deficient mice show a more severe inflammatory response and increased escape of bacteria from the colon into the lymphatic system in a dextran sodium sulfate mediated model of inflammatory bowel disease. These responses are similar to those of TLR4 and MyD88 deficient mice in these models and confirm that GSTO1-1 is critical for a TLR4-like pro-inflammatory response in vivo. In wild-type mice, we show that a small molecule inhibitor that covalently binds in the active site of GSTO1-1 can be used to ameliorate the inflammatory response to LPS. Our findings demonstrate the potential therapeutic utility of GSTO1-1 inhibitors in the modulation of inflammation and suggest their possible application in the treatment of a range of inflammatory conditions.


Asunto(s)
Proteínas Portadoras/metabolismo , Colitis/metabolismo , Glutatión Transferasa/metabolismo , Inflamación/metabolismo , Obesidad/metabolismo , Animales , Proteínas Portadoras/genética , Colitis/tratamiento farmacológico , Colitis/genética , Glutatión Transferasa/genética , Inflamación/tratamiento farmacológico , Inflamación/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/genética , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
5.
Front Immunol ; 8: 1300, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29081778

RESUMEN

Blocking interaction of the immune checkpoint receptor PD-1 with its ligand PD-L1 is associated with good clinical outcomes in a broad variety of malignancies. High levels of PD-L1 promote tumor growth by restraining CD8+ T-cell responses against tumors. Limiting PD-L1 expression and function is therefore critical for allowing the development of antitumor immune responses and effective tumor clearance. Pyruvate kinase isoform M2 (PKM2) is also a key player in regulating cancer as well as immune responses. PKM2 catalyzes the final rate-limiting step of glycolysis. Furthermore, PKM2 as a dimer translocates to the nucleus, where it stimulates hypoxia-inducible factor 1α (Hif-1α) transactivation domain function and recruitment of p300 to the hypoxia response elements (HRE) of Hif-1α target genes. Here, we provide the first evidence of a role for PKM2 in regulating the expression of PD-L1 on macrophages, dendritic cells (DCs), T cells, and tumor cells. LPS-induced expression of PD-L1 in primary macrophages was inhibited by the PKM2 targeting compound TEPP-46. Furthermore, RNA silencing of PKM2 inhibited LPS-induced PD-L1 expression. This regulation occurs through direct binding of PKM2 and Hif-1α to HRE sites on the PD-L1 promoter. Moreover, TEPP-46 inhibited expression of PD-L1 on macrophages, DCs, and T cells as well as tumor cells in a mouse CT26 cancer model. These findings broaden our understanding of how PKM2 may contribute to tumor progression and may explain the upregulation of PD-L1 in the tumor microenvironment.

6.
Proc Natl Acad Sci U S A ; 114(32): E6480-E6489, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739909

RESUMEN

MyD88 adaptor-like (MAL) is a critical protein in innate immunity, involved in signaling by several Toll-like receptors (TLRs), key pattern recognition receptors (PRRs). Crystal structures of MAL revealed a nontypical Toll/interleukin-1 receptor (TIR)-domain fold stabilized by two disulfide bridges. We therefore undertook a structural and functional analysis of the role of reactive cysteine residues in the protein. Under reducing conditions, the cysteines do not form disulfides, but under oxidizing conditions they are highly amenable to modification. The solution structure of the reduced form of the MAL TIR domain, determined by NMR spectroscopy, reveals a remarkable structural rearrangement compared with the disulfide-bonded structure, which includes the relocation of a ß-strand and repositioning of the functionally important "BB-loop" region to a location more typical for TIR domains. Redox measurements by NMR further reveal that C91 has the highest redox potential of all cysteines in MAL. Indeed, mass spectrometry revealed that C91 undergoes glutathionylation in macrophages activated with the TLR4 ligand lipopolysaccharide (LPS). The C91A mutation limits MAL glutathionylation and acts as a dominant negative, blocking the interaction of MAL with its downstream target MyD88. The H92P mutation mimics the dominant-negative effects of the C91A mutation, presumably by preventing C91 glutathionylation. The MAL C91A and H92P mutants also display diminished degradation and interaction with interleukin-1 receptor-associated kinase 4 (IRAK4). We conclude that in the cell, MAL is not disulfide-bonded and requires glutathionylation of C91 for signaling.


Asunto(s)
Glutatión/metabolismo , Glicoproteínas de Membrana , Procesamiento Proteico-Postraduccional , Receptores de Interleucina-1 , Transducción de Señal , Sustitución de Aminoácidos , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Glutatión/química , Glutatión/genética , Células HEK293 , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutación Missense , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Estructura Secundaria de Proteína , Receptores de Interleucina-1/química , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Relación Estructura-Actividad
7.
Trends Immunol ; 38(6): 395-406, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28396078

RESUMEN

A growing number of findings highlight the crucial role of metabolic reprogramming in macrophage activation. Metabolic pathways are closely interconnected and recent literature demonstrates the need for glucose metabolism in anti-inflammatory as well as inflammatory macrophages. Moreover, fatty acid oxidation (FAO) not only supports anti-inflammatory responses as described formerly but also drives inflammasome activation in inflammatory macrophages. Hence, defining glycolysis as proinflammatory and FAO as anti-inflammatory may be an oversimplification. Here we review how the rapid growth of the immunometabolism field has improved our understanding of macrophage activation and at the same time has led to an increase in the appearance of contradictory observations. To conclude we discuss current challenges in immunometabolism and present crucial areas for future research.


Asunto(s)
Ácidos Grasos/metabolismo , Inflamación/inmunología , Macrófagos/metabolismo , Mitocondrias/metabolismo , Animales , Diferenciación Celular , Reprogramación Celular , Glucólisis , Humanos , Inmunidad Innata , Metabolismo de los Lípidos , Activación de Macrófagos , Macrófagos/inmunología
8.
J Immunol ; 198(9): 3558-3564, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28298525

RESUMEN

PGE2 has been shown to increase the transcription of pro-IL-1ß. However, recently it has been demonstrated that PGE2 can block the maturation of IL-1ß by inhibiting the NLRP3 inflammasome in macrophages. These apparently conflicting results have led us to reexamine the effect of PGE2 on IL-1ß production. We have found that in murine bone marrow-derived macrophages, PGE2 via the cAMP/protein kinase A pathway is potently inducing IL-1ß transcription, as well as boosting the ability of LPS to induce IL-1ß mRNA and pro-IL-1ß while inhibiting the production of TNF-α. This results in an increase in mature IL-1ß production in macrophages treated with ATP. We also examined the effect of endogenously produced PGE2 on IL-1ß production. By blocking PGE2 production with indomethacin, we made a striking finding that endogenous PGE2 is essential for LPS-induced pro-IL-1ß production, suggesting a positive feedback loop. The effect of endogenous PGE2 was mediated by EP2 receptor. In primary human monocytes, where LPS alone is sufficient to induce mature IL-1ß, PGE2 boosted LPS-induced IL-1ß production. PGE2 did not inhibit ATP-induced mature IL-1ß production in monocytes. Because PGE2 mediates the pyrogenic effect of IL-1ß, these effects might be especially relevant for the role of monocytes in the induction of fever. A positive feedback loop from IL-1ß and back to PGE2, which itself is induced by IL-1ß, is likely to be operating. Furthermore, fever might therefore occur in the absence of a septic shock response because of the inhibiting effect of PGE2 on TNF-α production.


Asunto(s)
Dinoprostona/metabolismo , Fiebre/inmunología , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Monocitos/inmunología , Adenosina Trifosfato/farmacología , Animales , Células Cultivadas , Dinoprostona/antagonistas & inhibidores , Retroalimentación Fisiológica , Humanos , Indometacina/farmacología , Inflamasomas/metabolismo , Interleucina-1beta/genética , Lipopolisacáridos/inmunología , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
9.
Arch Toxicol ; 90(5): 1049-67, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26993125

RESUMEN

The Omega-class cytosolic glutathione transferases (GSTs) have distinct structural and functional attributes that allow them to perform novel roles unrelated to the functions of other GSTs. Mammalian GSTO1-1 has been found to play a previously unappreciated role in the glutathionylation cycle that is emerging as significant mechanism regulating protein function. GSTO1-1-catalyzed glutathionylation or deglutathionylation of a key signaling protein may explain the requirement for catalytically active GSTO1-1 in LPS-stimulated pro-inflammatory signaling through the TLR4 receptor. The observation that ML175 a specific GSTO1-1 inhibitor can block LPS-stimulated inflammatory signaling has opened a new avenue for the development of novel anti-inflammatory drugs that could be useful in the treatment of toxic shock and other inflammatory disorders. The role of GSTO2-2 remains unclear. As a dehydroascorbate reductase, it could contribute to the maintenance of cellular redox balance and it is interesting to note that the GSTO2 N142D polymorphism has been associated with multiple diseases including Alzheimer's disease, Parkinson's disease, familial amyotrophic lateral sclerosis, chronic obstructive pulmonary disease, age-related cataract and breast cancer.


Asunto(s)
Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Animales , Antiinflamatorios/farmacología , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica , Predisposición Genética a la Enfermedad , Glutatión Transferasa/antagonistas & inhibidores , Glutatión Transferasa/química , Glutatión Transferasa/genética , Humanos , Inactivación Metabólica , Oxidación-Reducción , Polimorfismo Genético , Conformación Proteica , Procesamiento Proteico-Postraduccional , Relación Estructura-Actividad , Especificidad por Sustrato
10.
J Cell Sci ; 128(10): 1982-90, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25908843

RESUMEN

Macrophages mediate innate immune responses that recognise foreign pathogens, and bacterial lipopolysaccharide (LPS) recruits a signalling pathway through Toll-like receptor 4 (TLR4) to induce pro-inflammatory cytokines and reactive oxygen species (ROS). LPS activation also skews the metabolism of macrophages towards a glycolytic phenotype. Here, we demonstrate that the LPS-triggered glycolytic switch is significantly attenuated in macrophages deficient for glutathione transferase omega-1 (GSTO1, note that GSTO1-1 refers to the dimeric molecule with identical type 1 subunits). In response to LPS, GSTO1-1-deficient macrophages do not produce excess lactate, or dephosphorylate AMPK, a key metabolic stress regulator. In addition, GSTO1-1-deficient cells do not induce HIF1α, which plays a key role in maintaining the pro-inflammatory state of activated macrophages. The accumulation of the TCA cycle intermediates succinate and fumarate that occurs in LPS-treated macrophages was also blocked in GSTO1-1-deficient cells. These data indicate that GSTO1-1 is required for LPS-mediated signalling in macrophages and that it acts early in the LPS-TLR4 pro-inflammatory pathway.


Asunto(s)
Proteínas Portadoras/metabolismo , Glutatión Transferasa/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Proteínas Portadoras/genética , Glutatión Transferasa/deficiencia , Glutatión Transferasa/genética , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Ratones , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Receptor Toll-Like 4/genética
11.
Free Radic Biol Med ; 73: 318-27, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24873723

RESUMEN

Bacterial lipopolysaccharide (LPS) stimulation of macrophages and inflammation via the Toll-like receptor 4 (TLR4) signaling pathway through NF-κΒ generates reactive oxygen species (ROS) and proinflammatory cytokines such as IL-1ß, IL-6, and TNFα. Because glutathione transferase Omega 1-1 (GSTO1-1) can catalyze redox reactions such as the deglutathionylation of proteins and has also been implicated in the release of IL-1ß we investigated its role in the development of LPS-mediated inflammation. Our data show that shRNA knockdown of GSTO1-1 in macrophage-like J774.1A cells blocks the expression of NADPH oxidase 1 and the generation of ROS after LPS stimulation. Similar results were obtained with a GSTO1-1 inhibitor. To maintain high ROS levels during an inflammatory response, LPS stimulation causes the suppression of enzymes such as catalase and glutathione peroxidase that protect against oxidative stress. The knockdown of GSTO1-1 also attenuates this response. Our data indicate that GSTO1-1 needs to be catalytically active and mediates its effects on the LPS/TLR4 inflammatory pathway upstream of NF-κΒ. These data suggest that GSTO1-1 is a novel target for anti-inflammatory intervention.


Asunto(s)
Proteínas Portadoras/genética , Glutatión Transferasa/genética , Macrófagos/metabolismo , NADH NADPH Oxidorreductasas/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/antagonistas & inhibidores , Línea Celular , Proteínas del Citoesqueleto , Radicales Libres , Glutatión Transferasa/antagonistas & inhibidores , Proteínas de Choque Térmico/genética , Inflamación/inmunología , Inflamación/patología , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Proteína 1 Asociada A ECH Tipo Kelch , Lipopolisacáridos , Ratones , NADPH Oxidasa 1 , Factor 2 Relacionado con NF-E2 , Subunidad p50 de NF-kappa B/metabolismo , Oxidación-Reducción , Estrés Oxidativo , PPAR gamma/biosíntesis , Interferencia de ARN , ARN Interferente Pequeño , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis
12.
J Biol Chem ; 288(36): 25769-25779, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23888047

RESUMEN

The glutathionylation of intracellular protein thiols can protect against irreversible oxidation and can act as a redox switch regulating metabolic pathways. In this study we discovered that the Omega class glutathione transferase GSTO1-1 plays a significant role in the glutathionylation cycle. The catalytic activity of GSTO1-1 was determined in vitro by assaying the deglutathionylation of a synthetic peptide by tryptophan fluorescence quenching and in T47-D epithelial breast cancer cells by both immunoblotting and the direct determination of total glutathionylation. Mutating the active site cysteine residue (Cys-32) ablated the deglutathionylating activity of GSTO1-1. Furthermore, we demonstrate that the expression of GSTO1-1 in T47-D cells that are devoid of endogenous GSTO1-1 resulted in a 50% reduction in total glutathionylation levels. Mass spectrometry and immunoprecipitation identified ß-actin as a protein that is specifically deglutathionylated by GSTO1-1 in T47-D cells. In contrast to the deglutathionylation activity, we also found that GSTO1-1 is associated with the rapid glutathionylation of cellular proteins when the cells are exposed to S-nitrosoglutathione. The common A140D genetic polymorphism in GSTO1 was found to have significant effects on the kinetics of both the deglutathionylation and glutathionylation reactions. Genetic variation in GSTO1-1 has been associated with a range of diseases, and the discovery that a frequent GSTO1-1 polymorphism affects glutathionylation cycle reactions reveals a common mechanism where it can act on multiple proteins and pathways.


Asunto(s)
Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Actinas/genética , Actinas/metabolismo , Sustitución de Aminoácidos , Dominio Catalítico , Línea Celular Tumoral , Glutatión/genética , Glutatión Transferasa/genética , Humanos , Mutación Missense , Polimorfismo Genético
13.
Anal Biochem ; 433(2): 132-6, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23072983

RESUMEN

This study reports the development of a new assay for the rapid determination of protein glutathionylation in tissues and cell lines using commercially available reagents and standard instrumentation. In this method cells are homogenized in the presence of N-ethylmaleimide to eliminate free thiols and the proteins are precipitated with acetone. Subsequently, the disulfide-bound glutathione is eluted from the protein by the addition of tris(2-carboxyethyl)phosphine and reacted with 2,3-napthalenedicarboxaldehyde to generate a highly fluorescent product. Lymphoblastoid cell lines were found to have glutathionylation levels in the range of 0.3-3 nmol/mg protein, which were significantly elevated after treatment of the cells with S-nitrosoglutathione. Mouse tissues including liver, kidney, lung, heart, brain, spleen, and testes were found to have glutathionylation levels between 1 and 2.5 nmol/mg protein and the levels tended to increase after treatment of mice with doxorubicin. In contrast, mouse skeletal muscle glutathionylation was significantly higher (4.2 ± 0.33 nmol/mg, p < 0.001) than in other tissues in untreated mice and decreased to 1.9 ± 0.15 nmol/mg after doxorubicin treatment. This new method allows rapid measurement of cellular glutathionylation in a high-throughput 96-well plate format.


Asunto(s)
Fluorometría/métodos , Glutatión/metabolismo , Naftalenos/química , Procesamiento Proteico-Postraduccional , Animales , Línea Celular Tumoral , Masculino , Ratones , Ratones Endogámicos BALB C , Especificidad de Órganos
14.
Biochim Biophys Acta ; 1830(5): 3267-88, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23201197

RESUMEN

BACKGROUND: The cytosolic glutathione transferases (GSTs) comprise a super family of proteins that can be categorized into multiple classes with a mixture of highly specific and overlapping functions. SCOPE OF REVIEW: The review covers the genetics, structure and function of the human cytosolic GSTs with particular attention to their emerging roles in cellular metabolism. MAJOR CONCLUSIONS: All the catalytically active GSTs contribute to the glutathione conjugation or glutathione dependant-biotransformation of xenobiotics and many catalyze glutathione peroxidase or thiol transferase reactions. GSTs also catalyze glutathione dependent isomerization reactions required for the synthesis of several prostaglandins and steroid hormones and the catabolism of tyrosine. An increasing body of work has implicated several GSTs in the regulation of cell signaling pathways mediated by stress-activated kinases like Jun N-terminal kinase. In addition, some members of the cytosolic GST family have been shown to form ion channels in intracellular membranes and to modulate ryanodine receptor Ca(2+) channels in skeletal and cardiac muscle. GENERAL SIGNIFICANCE: In addition to their well established roles in the conjugation and biotransformation of xenobiotics, GSTs have emerged as significant regulators of pathways determining cell proliferation and survival and as regulators of ryanodine receptors that are essential for muscle function. This article is part of a Special Issue entitled Cellular functions of glutathione.


Asunto(s)
Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Animales , Biotransformación , Catálisis , Citosol/metabolismo , Glutatión/genética , Glutatión Transferasa/genética , Humanos , Transducción de Señal , Xenobióticos/metabolismo , Xenobióticos/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...