Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(43): eadg6874, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37878703

RESUMEN

Interleukins are secreted proteins that regulate immune responses. Among these, the interleukin 12 (IL-12) family holds a central position in inflammatory and infectious diseases. Each family member consists of an α and a ß subunit that together form a composite cytokine. Within the IL-12 family, IL-35 remains particularly ill-characterized on a molecular level despite its key role in autoimmune diseases and cancer. Here we show that both IL-35 subunits, IL-12α and EBI3, mutually promote their secretion from cells but are not necessarily secreted as a heterodimer. Our data demonstrate that IL-12α and EBI3 are stable proteins in isolation that act as anti-inflammatory molecules. Both reduce secretion of proinflammatory cytokines and induce the development of regulatory T cells. Together, our study reveals IL-12α and EBI3, the subunits of IL-35, to be functionally active anti-inflammatory immune molecules on their own. This extends our understanding of the human cytokine repertoire as a basis for immunotherapeutic approaches.


Asunto(s)
Interleucina-12 , Interleucinas , Humanos , Citocinas/metabolismo , Interleucina-12/metabolismo , Interleucinas/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Linfocitos T Reguladores
2.
Front Cardiovasc Med ; 10: 975012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923955

RESUMEN

In this study, we addressed the functional significance of co-operative DNA binding of the cytokine-driven transcription factor STAT1 (signal transducer and activator of transcription 1) in an experimental murine model of acute myocardial infarction (MI). STAT1 knock-in mice expressing a phenylalanine-to-alanine substitution at position 77 in the STAT1 amino-terminal domain were examined for the early clinical effects produced by ligation of the left anterior descending coronary artery (LAD), an established model for MI. The F77A mutation has been previously reported to disrupt amino-terminal interactions between adjacent STAT1 dimers resulting in impaired tetramerization and defective co-operative binding on DNA, while leaving other protein functions unaffected. Our results demonstrate that a loss of STAT1 tetramer stabilization improves survival of adult male mice and ameliorates left ventricular dysfunction in female mice, as determined echocardiographically by an increased ejection fraction and a reduced left intra-ventricular diameter. We found that the ratio of STAT3 to STAT1 protein level was higher in the infarcted tissue in knock-in mice as compared to wild-type (WT) mice, which was accompanied by an enhanced infiltration of immune cells in the infarcted area, as determined by histology. Additionally, RNA sequencing of the infarcted tissue 24 h after LAD ligation revealed an upregulation of inflammatory genes in the knock-in mice, as compared to their WT littermates. Concomitantly, genes involved in oxidative phosphorylation and other metabolic pathways showed a significantly more pronounced downregulation in the infarcted tissue from STAT1F77A/F77A mice than in WT animals. Based on these results, we propose that dysfunctional STAT1 signalling owing to a lack of oligomerisation results in a compensatory increase in STAT3 expression and promotes early infiltration of immune cells in the infarcted area, which has beneficial effects on left ventricular remodelling in early MI following LAD ligation.

3.
BMC Mol Cell Biol ; 23(1): 23, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752777

RESUMEN

BACKGROUND: Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor that promotes cell proliferation and immunomodulation in untransformed cells and maintains stemness of transformed cells, facilitating invasion and metastasis. Numerous point mutations in the STAT3 protein have been identified that drive malignancy in various tumor entities. The missense mutation D427H localized in the STAT3 DNA-binding domain has been previously reported in patients with NK/T cell lymphomas. To assess the biological activity of this missense mutation, we compared the STAT3-D427H mutant to wild-type (WT) protein as well as the known hyper-active mutant F174A. RESULTS: Although previously reported as an activating mutation, the STAT3-D427H mutant neither showed elevated cytokine-induced tyrosine phosphorylation nor altered nuclear accumulation, as compared to the WT protein. However, the D427H mutant displayed enhanced binding to STAT-specific DNA-binding sites but a reduced sequence specificity and dissociation rate from DNA, which was demonstrated by electrophoretic mobility shift assays. This observation is consistent with the phenotype of the homologous E421K mutation in the STAT1 protein, which also displayed enhanced binding to DNA but lacked a corresponding increase in transcriptional activity. CONCLUSIONS: Based on our data, it is unlikely that the D427H missense mutation in the STAT3 protein possesses an oncogenic potential beyond the WT molecule.


Asunto(s)
Linfoma , Factor de Transcripción STAT3 , ADN , Humanos , Linfoma/genética , Mutación Puntual/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/genética
4.
Cell Commun Signal ; 20(1): 42, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361236

RESUMEN

BACKGROUND: Unphosphorylated signal transducer and activator of transcription 1 (U-STAT1) has been reported to elicit a distinct gene expression profile as compared to tyrosine-phosphorylated STAT1 (P-STAT1) homodimers. However, the impact of U-STAT1 on the IFNγ-induced immune response mediated by P-STAT1 is unknown. By generating a double mutant of STAT1 with mutation R602L in the Src-homology 2 (SH2) domain and Y701F in the carboxy-terminal transactivation domain mimicking U-STAT1, we investigated the effects of U-STAT1 on P-STAT1-mediated signal transduction. RESULTS: In this study, we discovered a novel activity of U-STAT1 that alters the nucleo-cytoplasmic distribution of cytokine-stimulated P-STAT1. While the dimerization-deficient mutant R602L/Y701F was not able to display cytokine-induced nuclear accumulation, it inhibited the nuclear accumulation of co-expressed IFNγ-stimulated wild-type P-STAT1. Disruption of the anti-parallel dimer interface in the R602L/Y701F mutant via additional R274W and T385A mutations did not rescue the impaired nuclear accumulation of co-expressed P-STAT1. The mutant U-STAT1 affected neither the binding of co-expressed P-STAT1 to gamma-activated sites in vitro, nor the transcription of reporter constructs and the activation of STAT1 target genes. However, the nuclear accumulation of P-STAT1 was diminished in the presence of mutant U-STAT1, which was not restored by mutations reducing the DNA affinity of mutant U-STAT1. Whereas single mutations in the amino-terminus of dimerization-deficient U-STAT1 similarly inhibited the nuclear accumulation of co-expressed P-STAT1, a complete deletion of the amino-terminus restored cytokine-stimulated nuclear accumulation of P-STAT1. Likewise, the disruption of a dimer-specific nuclear localization signal also rescued the U-STAT1-mediated inhibition of P-STAT1 nuclear accumulation. CONCLUSION: Our data demonstrate a novel role of U-STAT1 in affecting nuclear accumulation of P-STAT1, such that a high intracellular concentration of U-STAT1 inhibits the detection of nuclear P-STAT1 in immunofluorescence assays. These observations hint at a possible physiological function of U-STAT1 in buffering the nuclear import of P-STAT1, while preserving IFNγ-induced gene expression. Based on these results, we propose a model of a hypothetical import structure, the assembly of which is impaired under high concentrations of U-STAT1. This mechanism maintains high levels of cytoplasmic STAT1, while simultaneously retaining signal transduction by IFNγ. Video Abstract.


Asunto(s)
Núcleo Celular , ADN , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , ADN/metabolismo , Fosforilación , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
5.
Biochim Biophys Acta Mol Cell Res ; 1868(12): 119118, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34390807

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) gain-of-function mutations have been widely reported in patients with tumors and haematological malignancies. However, the molecular mechanisms of these pathogenic mutations remain largely uninvestigated. In this study, we have extensively characterized two STAT3 missense mutations, namely a valine-to-alanine exchange in the amino-terminal region (V77A) and a phenylalanine-to-alanine substitution (F174A) in the coiled-coil domain. The two mutants displayed elevated levels of tyrosine phosphorylation, premature nuclear accumulation, and differential transcriptional responses following stimulation of cells with interleukin-6 and interferon-É£. In line with their hyper-phosphorylated status, a greater fraction of V77A and F174A proteins was bound to DNA on high-affinity binding sites termed sis-inducible elements (SIE) as compared to the wild-type (WT) protein. Unexpectedly, these STAT3 variants displayed similar kinetics using in vitro kinase and dephosphorylation assays performed with recombinant Janus kinase 2 (JAK2) and Tc45 phosphatase, respectively. This indicates that the two mutations neither affected the susceptibility of STAT3 to the enzymatic activity of the inactivating tyrosine phosphatase nor to the activating kinase. However, experiments triggering intracellular dephosphorylation by the addition of the tyrosine-kinase inhibitor staurosporine to cytokine-pretreated cells showed that the two mutants partially resisted dephosphorylation. From these data, we propose that the F174A missense mutation hinders the exchange from a parallel to an anti-parallel dimer conformation, thereby increasing the ratio of tyrosine-phosphorylated molecules bound to DNA and enhancing gene-dependent transcription. Our data point to the physiological importance of the anti-parallel dimer conformation in the inactivation of the cytokine-induced STAT3 signalling pathway.


Asunto(s)
Factor de Transcripción STAT3/química , Transducción de Señal , Animales , Sitios de Unión , Línea Celular Tumoral , Citocinas/metabolismo , Humanos , Janus Quinasa 2/metabolismo , Ratones , Mutación Missense , Unión Proteica , Multimerización de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...