Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nature ; 608(7923): 528-533, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35585230

RESUMEN

Evidence exists that tree mortality is accelerating in some regions of the tropics1,2, with profound consequences for the future of the tropical carbon sink and the global anthropogenic carbon budget left to limit peak global warming below 2 °C. However, the mechanisms that may be driving such mortality changes and whether particular species are especially vulnerable remain unclear3-8. Here we analyse a 49-year record of tree dynamics from 24 old-growth forest plots encompassing a broad climatic gradient across the Australian moist tropics and find that annual tree mortality risk has, on average, doubled across all plots and species over the last 35 years, indicating a potential halving in life expectancy and carbon residence time. Associated losses in biomass were not offset by gains from growth and recruitment. Plots in less moist local climates presented higher average mortality risk, but local mean climate did not predict the pace of temporal increase in mortality risk. Species varied in the trajectories of their mortality risk, with the highest average risk found nearer to the upper end of the atmospheric vapour pressure deficit niches of species. A long-term increase in vapour pressure deficit was evident across the region, suggesting that thresholds involving atmospheric water stress, driven by global warming, may be a primary cause of increasing tree mortality in moist tropical forests.


Asunto(s)
Atmósfera , Estrés Fisiológico , Árboles , Clima Tropical , Agua , Aclimatación , Atmósfera/química , Australia , Biomasa , Carbono/metabolismo , Secuestro de Carbono , Deshidratación , Calentamiento Global/estadística & datos numéricos , Historia del Siglo XX , Historia del Siglo XXI , Humedad , Densidad de Población , Riesgo , Factores de Tiempo , Árboles/clasificación , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Agua/análisis , Agua/metabolismo
3.
Sci Rep ; 11(1): 23948, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907235

RESUMEN

Many tropical mountain ecosystems (TME) are severely disturbed, requiring ecological restoration to recover biodiversity and ecosystem functions. However, the extent of restoration efforts across TMEs is not known due to the lack of syntheses on ecological restoration research. Here, based on a systematic review, we identify geographical and thematic research gaps, compare restoration interventions, and consolidate enabling factors and barriers of restoration success. We find that restoration research outside Latin-America, in non-forested ecosystems, and on socio-ecological questions is scarce. For most restoration interventions success is mixed and generally limited by dispersal and microhabitat conditions. Finally, we propose five directions for future research on tropical mountain restoration in the UN decade of restoration, ranging from scaling up restoration across mountain ranges, investigating restoration in mountain grasslands, to incorporating socio-economic and technological dimensions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...