Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J R Soc Interface ; 20(204): 20230244, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37434500

RESUMEN

Turing's mechanism is often invoked to explain periodic patterns in nature, although direct experimental support is scarce. Turing patterns form in reaction-diffusion systems when the activating species diffuse much slower than the inhibiting species, and the involved reactions are highly nonlinear. Such reactions can originate from cooperativity, whose physical interactions should also affect diffusion. We here take direct interactions into account and show that they strongly affect Turing patterns. We find that weak repulsion between the activator and inhibitor can substantially lower the required differential diffusivity and reaction nonlinearity. By contrast, strong interactions can induce phase separation, but the resulting length scale is still typically governed by the fundamental reaction-diffusion length scale. Taken together, our theory connects traditional Turing patterns with chemically active phase separation, thus describing a wider range of systems. Moreover, we demonstrate that even weak interactions affect patterns substantially, so they should be incorporated when modelling realistic systems.


Asunto(s)
Difusión
2.
Phys Rev E ; 104(6-1): 064408, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35030852

RESUMEN

Nanoindentation of viral capsids provides an efficient tool in order to probe their elastic properties. We investigate in the present work the various sources of stiffness heterogeneity as observed in atomic force microscopy experiments. By combining experimental results with both numerical and analytical modeling, we first show that for small viruses, a position-dependent stiffness is observed. This effect is strong and has not been properly taken into account previously. Moreover, we show that a geometrical model is able to reproduce this effect quantitatively. Our work suggests alternative ways of measuring stiffness heterogeneities on small viral capsids. This is illustrated on two different viral capsids: Adeno associated virus serotype 8 (AAV8) and hepatitis B virus (HBV with T=4). We discuss our results in light of continuous elasticity modeling.

3.
Soft Matter ; 15(30): 6180-6189, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31328201

RESUMEN

Molecular self-assembly on a curved substrate leads to the spontaneous inclusion of topological defects in the growing bidimensional crystal, unlike assembly on a flat substrate. We propose in this work a quantitative mechanism for this phenomenon by using standard thin shell elasticity. The Gaussian curvature of the substrate induces large in-plane compressive stress as the surface grows, in particular at the rim of the assembly, and the addition of a single defect relaxes this mechanical stress. We found out that the value of azimuthal stress at the rim of the assembly determines the preferred directions for defect nucleation. These results are also discussed as a function of different defect combinations, like dislocations and grain boundaries or scars. In particular, the elastic model permits us to compare quantitatively the ability of various defects to relax mechanical stress. Moreover, these findings allow us to understand the progressive building-up of the typical disclination and grain boundary pattern observed for ground states of large 2D spherical crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...