Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
2.
Am J Med Genet A ; : e63599, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517182

RESUMEN

Pathogenic variants in TRIO, encoding the guanine nucleotide exchange factor, are associated with two distinct neurodevelopmental delay phenotypes: gain-of-function missense mutations within the spectrin repeats are causative for a severe developmental delay with macrocephaly (MIM: 618825), whereas loss-of-function missense variants in the GEF1 domain and truncating variants throughout the gene lead to a milder developmental delay and microcephaly (MIM: 617061). In three affected family members with mild intellectual disability/NDD and microcephaly, we detected a novel heterozygous TRIO variant at the last coding base of exon 31 (NM_007118.4:c.4716G>A). RNA analysis from patient-derived lymphoblastoid cells confirmed aberrant splicing resulting in the skipping of exon 31 (r.4615_4716del), leading to an in-frame deletion in the first Pleckstrin homology subdomain of the GEF1 domain: p.(Thr1539_Lys1572del). To test for a distinct gestalt, facial characteristics of the family members and 41 previously published TRIO cases were systematically evaluated via GestaltMatcher. Computational analysis of the facial gestalt suggests a distinguishable facial TRIO-phenotype not outlined in the existing literature.

3.
Am J Hum Genet ; 111(2): 338-349, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38228144

RESUMEN

Clinical exome and genome sequencing have revolutionized the understanding of human disease genetics. Yet many genes remain functionally uncharacterized, complicating the establishment of causal disease links for genetic variants. While several scoring methods have been devised to prioritize these candidate genes, these methods fall short of capturing the expression heterogeneity across cell subpopulations within tissues. Here, we introduce single-cell tissue-specific gene prioritization using machine learning (STIGMA), an approach that leverages single-cell RNA-seq (scRNA-seq) data to prioritize candidate genes associated with rare congenital diseases. STIGMA prioritizes genes by learning the temporal dynamics of gene expression across cell types during healthy organogenesis. To assess the efficacy of our framework, we applied STIGMA to mouse limb and human fetal heart scRNA-seq datasets. In a cohort of individuals with congenital limb malformation, STIGMA prioritized 469 variants in 345 genes, with UBA2 as a notable example. For congenital heart defects, we detected 34 genes harboring nonsynonymous de novo variants (nsDNVs) in two or more individuals from a set of 7,958 individuals, including the ortholog of Prdm1, which is associated with hypoplastic left ventricle and hypoplastic aortic arch. Overall, our findings demonstrate that STIGMA effectively prioritizes tissue-specific candidate genes by utilizing single-cell transcriptome data. The ability to capture the heterogeneity of gene expression across cell populations makes STIGMA a powerful tool for the discovery of disease-associated genes and facilitates the identification of causal variants underlying human genetic disorders.


Asunto(s)
Cardiopatías Congénitas , Transcriptoma , Humanos , Animales , Ratones , Exoma/genética , Cardiopatías Congénitas/genética , Secuenciación del Exoma , Aprendizaje Automático , Análisis de la Célula Individual/métodos , Enzimas Activadoras de Ubiquitina/genética
4.
Oral Dis ; 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071191

RESUMEN

BACKGROUND/OBJECTIVES: Tooth agenesis (TA) is among the most common malformations in humans. Although several causative mutations have been described, the genetic cause often remains elusive. Here, we test whether whole genome sequencing (WGS) could bridge this diagnostic gap. METHODS: In four families with TA, we assessed the dental phenotype using the Tooth Agenesis Code after intraoral examination and radiographic and photographic documentation. We performed WGS of index patients and subsequent segregation analysis. RESULTS: We identified two variants of uncertain significance (a potential splice variant in PTH1R, and a 2.1 kb deletion abrogating a non-coding element in FGF7) and three pathogenic variants: a novel frameshift in the final exon of PITX2, a novel deletion in PAX9, and a known nonsense variant in WNT10A. Notably, the FGF7 variant was found in the patient, also featuring the WNT10A variant. While mutations in PITX2 are known to cause Axenfeld-Rieger syndrome 1 (ARS1) predominantly featuring ocular findings, accompanied by dental malformations, we found the PITX2 frameshift in a family with predominantly dental and varying ocular findings. CONCLUSION: Severe TA predicts a genetic cause identifiable by WGS. Final exon PITX2 frameshifts can cause a predominantly dental form of ARS1.

5.
Am J Hum Genet ; 110(11): 1959-1975, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37883978

RESUMEN

Valosin-containing protein (VCP) is an AAA+ ATPase that plays critical roles in multiple ubiquitin-dependent cellular processes. Dominant pathogenic variants in VCP are associated with adult-onset multisystem proteinopathy (MSP), which manifests as myopathy, bone disease, dementia, and/or motor neuron disease. Through GeneMatcher, we identified 13 unrelated individuals who harbor heterozygous VCP variants (12 de novo and 1 inherited) associated with a childhood-onset disorder characterized by developmental delay, intellectual disability, hypotonia, and macrocephaly. Trio exome sequencing or a multigene panel identified nine missense variants, two in-frame deletions, one frameshift, and one splicing variant. We performed in vitro functional studies and in silico modeling to investigate the impact of these variants on protein function. In contrast to MSP variants, most missense variants had decreased ATPase activity, and one caused hyperactivation. Other variants were predicted to cause haploinsufficiency, suggesting a loss-of-function mechanism. This cohort expands the spectrum of VCP-related disease to include neurodevelopmental disease presenting in childhood.


Asunto(s)
Enfermedades Musculares , Trastornos del Neurodesarrollo , Adulto , Humanos , Proteína que Contiene Valosina/genética , Hipotonía Muscular , Mutación Missense/genética
6.
Genet Med ; 25(11): 100928, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37427568

RESUMEN

PURPOSE: HOXD13 is an important regulator of limb development. Pathogenic variants in HOXD13 cause synpolydactyly type 1 (SPD1). How different types and positions of HOXD13 variants contribute to genotype-phenotype correlations, penetrance, and expressivity of SPD1 remains elusive. Here, we present a novel cohort and a literature review to elucidate HOXD13 phenotype-genotype correlations. METHODS: Patients with limb anomalies suggestive of SPD1 were selected for analysis of HOXD13 by Sanger sequencing, repeat length analysis, and next-generation sequencing. Literature was reviewed for HOXD13 heterozygotes. Variants were annotated for phenotypic data. Severity was calculated, and cluster and decision-tree analyses were performed. RESULTS: We identified 98 affected members of 38 families featuring 11 different (likely) causative variants and 4 variants of uncertain significance. The most frequent (25/38) were alanine repeat expansions. Phenotypes ranged from unaffected heterozygotes to severe osseous synpolydactyly, with intra- and inter-familial heterogeneity and asymmetry. A literature review provided 160 evaluable affected members of 49 families with SPD1. Computer-aided analysis only corroborated a positive correlation between alanine repeat length and phenotype severity. CONCLUSION: Our findings support that HOXD13-protein condensation in addition to haploinsufficiency is the molecular pathomechanism of SPD1. Our data may, also, facilitate the interpretation of synpolydactyly radiographs by future automated tools.


Asunto(s)
Proteínas de Homeodominio , Sindactilia , Humanos , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Sindactilia/genética , Genotipo , Fenotipo , Linaje , Alanina/genética , Mutación
7.
Nature ; 614(7948): 564-571, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755093

RESUMEN

Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions1-3. Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus4,5. This suggests that mutations in disordered proteins may alter condensate properties and function6-8. Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in HMGB1 that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans.


Asunto(s)
Nucléolo Celular , Proteína HMGB1 , Humanos , Arginina/genética , Arginina/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/patología , Proteína HMGB1/química , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Síndrome , Mutación del Sistema de Lectura , Transición de Fase
8.
Mov Disord ; 37(8): 1707-1718, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35699229

RESUMEN

BACKGROUND: Variants in genes of the nucleotide excision repair (NER) pathway have been associated with heterogeneous clinical presentations ranging from xeroderma pigmentosum to Cockayne syndrome and trichothiodystrophy. NER deficiencies manifest with photosensitivity and skin cancer, but also developmental delay and early-onset neurological degeneration. Adult-onset neurological features have been reported in only a few xeroderma pigmentosum cases, all showing at least mild skin manifestations. OBJECTIVE: The aim of this multicenter study was to investigate the frequency and clinical features of patients with biallelic variants in NER genes who are predominantly presenting with neurological signs. METHODS: In-house exome and genome datasets of 14,303 patients, including 3543 neurological cases, were screened for deleterious variants in NER-related genes. Clinical workup included in-depth neurological and dermatological assessments. RESULTS: We identified 13 patients with variants in ERCC4 (n = 8), ERCC2 (n = 4), or XPA (n = 1), mostly proven biallelic, including five different recurrent and six novel variants. All individuals had adult-onset progressive neurological deterioration with ataxia, dementia, and frequently chorea, neuropathy, and spasticity. Brain magnetic resonance imaging showed profound global brain atrophy in all patients. Dermatological examination did not show any skin cancer or pronounced ultraviolet damage. CONCLUSIONS: We introduce NERDND as adult-onset neurodegeneration (ND ) within the spectrum of autosomal recessive NER disorders (NERD). Our study demonstrates that NERDND is probably an underdiagnosed cause of neurodegeneration in adulthood and should be considered in patients with overlapping cognitive and movement abnormalities. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Síndrome de Cockayne , Neoplasias Cutáneas , Xerodermia Pigmentosa , Adulto , Síndrome de Cockayne/complicaciones , Síndrome de Cockayne/genética , Reparación del ADN/genética , Humanos , Piel , Neoplasias Cutáneas/genética , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/metabolismo , Xerodermia Pigmentosa/patología , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo
9.
J Hum Genet ; 67(7): 405-410, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35095096

RESUMEN

Bilateral laryngeal abductor paralysis is a rare entity and the second most common cause of stridor in newborns. So far, no conclusive genetic or chromosomal aberration has been reported for X-linked isolated bilateral vocal cord paralysis, also referred to as Plott syndrome. Via whole genome sequencing (WGS), we identified a complex interchromosomal insertion in a large family with seven affected males. The 404 kb inserted fragment originates from chromosome 10q21.3, contains no genes and is inserted inversionally into the intergenic chromosomal region Xq27.1, 82 kb centromeric to the nearest gene SOX3. The patterns found at the breakpoint junctions resemble typical characteristics that arise in replication-based mechanisms with long-distance template switching. Non protein-coding insertions into the same genomic region have been described to result in different phenotypes, indicating that the phenotypic outcome likely depends on the introduction of regulatory elements. In conclusion, our data adds Plott syndrome as another entity, likely caused by the insertion of non-coding DNA into the intergenic chromosomal region Xq27.1. In this regard, we demonstrate the importance of WGS as a powerful diagnostic test in unsolved genetic diseases, as this genomic rearrangement has not been detected by current first-line diagnostic tests, i.e., exome sequencing and chromosomal microarray analysis.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Discapacidad Intelectual , Parálisis de los Pliegues Vocales , Aberraciones Cromosómicas , Genes Ligados a X , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Parálisis de los Pliegues Vocales/genética
10.
Eur J Hum Genet ; 30(2): 178-186, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34744167

RESUMEN

Copy Number Variants (CNVs) are deletions, duplications or insertions larger than 50 base pairs. They account for a large percentage of the normal genome variation and play major roles in human pathology. While array-based approaches have long been used to detect them in clinical practice, whole-genome sequencing (WGS) bears the promise to allow concomitant exploration of CNVs and smaller variants. However, accurately calling CNVs from WGS remains a difficult computational task, for which a consensus is still lacking. In this paper, we explore practical calling options to reach the best compromise between sensitivity and sensibility. We show that callers based on different signal (paired-end reads, split reads, coverage depth) yield complementary results. We suggest approaches combining four selected callers (Manta, Delly, ERDS, CNVnator) and a regenotyping tool (SV2), and show that this is applicable in everyday practice in terms of computation time and further interpretation. We demonstrate the superiority of these approaches over array-based Comparative Genomic Hybridization (aCGH), specifically regarding the lack of resolution in breakpoint definition and the detection of potentially relevant CNVs. Finally, we confirm our results on the NA12878 benchmark genome, as well as one clinically validated sample. In conclusion, we suggest that WGS constitutes a timely and economically valid alternative to the combination of aCGH and whole-exome sequencing.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma Humano , Hibridación Genómica Comparativa , Humanos , Secuenciación del Exoma , Secuenciación Completa del Genoma
11.
Hum Genet ; 140(8): 1229-1239, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34159400

RESUMEN

The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified.


Asunto(s)
Heterogeneidad Genética , Proteínas de Homeodominio/genética , Deformidades Congénitas de las Extremidades/genética , Mutación , Factores de Transcripción/genética , Enzimas Activadoras de Ubiquitina/genética , Secuencia de Bases , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Expresión Génica , Pruebas Genéticas , Humanos , Lactante , Deformidades Congénitas de las Extremidades/metabolismo , Deformidades Congénitas de las Extremidades/patología , Masculino , Linaje , Factores de Transcripción/deficiencia , Enzimas Activadoras de Ubiquitina/deficiencia , Secuenciación Completa del Genoma
12.
Eur J Hum Genet ; 27(12): 1827-1835, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31320746

RESUMEN

Variants in DONSON were recently identified as the cause of microcephaly, short stature, and limb abnormalities syndrome (MISSLA). The clinical spectra of MISSLA and Fanconi anaemia (FA) strongly overlap. For that reason, some MISSLA patients have been clinically diagnosed with FA. Here, we present the clinical data of siblings with MISSLA featuring a novel DONSON variant and summarize the current literature on MISSLA. Additionally, we perform computer-aided image analysis using the DeepGestalt technology to test how distinct the facial features of MISSLA and FA patients are. We show that MISSLA has a specific facial gestalt. Notably, we find that also FA patients feature facial characteristics recognizable by computer-aided image analysis. We conclude that computer-assisted image analysis improves diagnostic precision in both MISSLA and FA.


Asunto(s)
Proteínas de Ciclo Celular/genética , Enanismo/genética , Anemia de Fanconi/genética , Microcefalia/genética , Proteínas Nucleares/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Enanismo/diagnóstico , Enanismo/diagnóstico por imagen , Enanismo/patología , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/diagnóstico por imagen , Anemia de Fanconi/patología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Microcefalia/diagnóstico , Microcefalia/diagnóstico por imagen , Microcefalia/patología , Mutación , Fenotipo , Hermanos
13.
Genet Med ; 21(12): 2807-2814, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31164752

RESUMEN

PURPOSE: Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists. METHODS: Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds. RESULTS: The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20-89% and the top 10 accuracy rate by more than 5-99% for the disease-causing gene. CONCLUSION: Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis.


Asunto(s)
Biología Computacional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Bases de Datos Genéticas , Aprendizaje Profundo , Exoma/genética , Femenino , Genómica , Humanos , Masculino , Fenotipo , Programas Informáticos
14.
Am J Hum Genet ; 104(5): 914-924, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982611

RESUMEN

Glypicans are a family of cell-surface heparan sulfate proteoglycans that regulate growth-factor signaling during development and are thought to play a role in the regulation of morphogenesis. Whole-exome sequencing of the Australian family that defined Keipert syndrome (nasodigitoacoustic syndrome) identified a hemizygous truncating variant in the gene encoding glypican 4 (GPC4). This variant, located in the final exon of GPC4, results in premature termination of the protein 51 amino acid residues prior to the stop codon, and in concomitant loss of functionally important N-linked glycosylation (Asn514) and glycosylphosphatidylinositol (GPI) anchor (Ser529) sites. We subsequently identified seven affected males from five additional kindreds with novel and predicted pathogenic variants in GPC4. Segregation analysis and X-inactivation studies in carrier females provided supportive evidence that the GPC4 variants caused the condition. Furthermore, functional studies of recombinant protein suggested that the truncated proteins p.Gln506∗ and p.Glu496∗ were less stable than the wild type. Clinical features of Keipert syndrome included a prominent forehead, a flat midface, hypertelorism, a broad nose, downturned corners of mouth, and digital abnormalities, whereas cognitive impairment and deafness were variable features. Studies of Gpc4 knockout mice showed evidence of the two primary features of Keipert syndrome: craniofacial abnormalities and digital abnormalities. Phylogenetic analysis demonstrated that GPC4 is most closely related to GPC6, which is associated with a bone dysplasia that has a phenotypic overlap with Keipert syndrome. Overall, we have shown that pathogenic variants in GPC4 cause a loss of function that results in Keipert syndrome, making GPC4 the third human glypican to be linked to a genetic syndrome.


Asunto(s)
Sordera/congénito , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Variación Genética , Glipicanos/genética , Deformidades Congénitas de las Extremidades Inferiores/genética , Deformidades Congénitas de las Extremidades Inferiores/patología , Adulto , Niño , Preescolar , Sordera/genética , Sordera/patología , Femenino , Humanos , Lactante , Masculino , Linaje , Fenotipo , Adulto Joven
15.
Eur J Hum Genet ; 26(9): 1282-1287, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29760432

RESUMEN

Recently, variants in DONSON have been reported to cause different disorders of the microcephalic primordial dwarfism spectrum. Using whole-exome sequencing, we identified two novel, compound heterozygous DONSON variants in a pair of siblings, one of whom was previously diagnosed with Fanconi anemia. This occurred because the present cases exhibited clinical findings in addition to those of the microcephalic primordial dwarfism disorder, including severe limb malformations. These findings suggest that the DONSON and Fanconi anemia proteins could have supplementary roles in developmental processes as they have in the maintenance of genomic integrity, resulting in related disease phenotypes.


Asunto(s)
Proteínas de Ciclo Celular/genética , Enanismo/genética , Deformidades Congénitas de las Extremidades/genética , Microcefalia/genética , Proteínas Nucleares/genética , Fenotipo , Feto Abortado/patología , Enanismo/patología , Femenino , Heterocigoto , Humanos , Lactante , Deformidades Congénitas de las Extremidades/patología , Microcefalia/patología , Mutación , Síndrome
16.
J Inherit Metab Dis ; 41(3): 533-539, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29623569

RESUMEN

Significant improvements in automated image analysis have been achieved in recent years and tools are now increasingly being used in computer-assisted syndromology. However, the ability to recognize a syndromic facial gestalt might depend on the syndrome and may also be confounded by severity of phenotype, size of available training sets, ethnicity, age, and sex. Therefore, benchmarking and comparing the performance of deep-learned classification processes is inherently difficult. For a systematic analysis of these influencing factors we chose the lysosomal storage diseases mucolipidosis as well as mucopolysaccharidosis type I and II that are known for their wide and overlapping phenotypic spectra. For a dysmorphic comparison we used Smith-Lemli-Opitz syndrome as another inborn error of metabolism and Nicolaides-Baraitser syndrome as another disorder that is also characterized by coarse facies. A classifier that was trained on these five cohorts, comprising 289 patients in total, achieved a mean accuracy of 62%. We also developed a simulation framework to analyze the effect of potential confounders, such as cohort size, age, sex, or ethnic background on the distinguishability of phenotypes. We found that the true positive rate increases for all analyzed disorders for growing cohorts (n = [10...40]) while ethnicity and sex have no significant influence. The dynamics of the accuracies strongly suggest that the maximum distinguishability is a phenotype-specific value, which has not been reached yet for any of the studied disorders. This should also be a motivation to further intensify data sharing efforts, as computer-assisted syndrome classification can still be improved by enlarging the available training sets.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/tendencias , Errores Innatos del Metabolismo/diagnóstico , Adolescente , Algoritmos , Niño , Facies , Femenino , Deformidades Congénitas del Pie/diagnóstico , Deformidades Congénitas del Pie/metabolismo , Humanos , Hipotricosis/diagnóstico , Hipotricosis/metabolismo , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/metabolismo , Masculino , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/tendencias , Fenotipo , Síndrome de Smith-Lemli-Opitz/diagnóstico , Síndrome de Smith-Lemli-Opitz/metabolismo , Síndrome
17.
Eur J Med Genet ; 61(7): 363-368, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29407414

RESUMEN

3MC syndrome is a rare autosomal recessive disorder with characteristic craniofacial dysmorphism and multiple anomalies. It is caused by biallelic mutations in one of three genes, MASP1, COLEC11 and COLEC10, all encoding factors of the lectin complement pathway. In MASP1, either truncating mutations or missense variants in exon 12 encoding the C-terminal serine protease domain specific for isoform MASP-3 are causative. By trio exome sequencing we now identified a novel, homozygous 2kb deletion, partially affecting exon 12 in an adult female with the typical facial gestalt of 3MC syndrome and hearing loss, but without the main feature cleft lip/palate, and without intellectual disability, or short stature. We therefore expand the MASP1 associated mutational and clinical spectrum and describe the development of her clinical presentation over a period of 21 years. As the homozygous deletion in our patient was only found by thorough and visual evaluation of the whole exome sequencing data, such deletions might escape detection in some routine diagnostic workflows and might explain a few of the so far molecularly unconfirmed cases of 3MC syndrome.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Adulto , Cara/anomalías , Femenino , Eliminación de Gen , Humanos , Síndrome , Secuenciación del Exoma , Adulto Joven
18.
Am J Med Genet A ; 176(3): 668-675, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29341480

RESUMEN

The cutis laxa syndromes are multisystem disorders that share loose redundant inelastic and wrinkled skin as a common hallmark clinical feature. The underlying molecular defects are heterogeneous and 13 different genes have been involved until now, all of them being implicated in elastic fiber assembly. We provide here molecular and clinical characterization of three unrelated patients with a very rare phenotype associating cutis laxa, facial dysmorphism, severe growth retardation, hyperostotic skeletal dysplasia, and intellectual disability. This disorder called Lenz-Majewski syndrome (LMS) is associated with gain of function mutations in PTDSS1, encoding an enzyme involved in phospholipid biosynthesis. This report illustrates that LMS is an unequivocal cutis laxa syndrome and expands the clinical and molecular spectrum of this group of disorders. In the neonatal period, brachydactyly and facial dysmorphism are two early distinctive signs, later followed by intellectual disability and hyperostotic skeletal dysplasia with severe dwarfism allowing differentiation of this condition from other cutis laxa phenotypes. Further studies are needed to understand the link between PTDSS1 and extra cellular matrix assembly.


Asunto(s)
Cutis Laxo/diagnóstico , Cutis Laxo/genética , Hiperostosis/diagnóstico , Hiperostosis/genética , Mutación , Transferasas de Grupos Nitrogenados/genética , Fenotipo , Adulto , Alelos , Niño , Preescolar , Exones , Facies , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Radiografía
19.
Mol Syndromol ; 8(2): 93-97, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28611549

RESUMEN

Crouzon syndrome craniofacial dysostosis type I [OMIM 123500] is caused by mutations in the gene encoding fibroblast growth factor receptor-2 (FGFR2). An overlapping phenotype with Muenke and Crouzon syndrome with acanthosis nigricans (FGFR3 mutations) is known. The clinical diagnosis can be corroborated by molecular studies in about 80-90% of the cases. No clear genotype/phenotype correlation has been identified yet. Here, we describe a second family with a mild phenotype in which the FGFR2 mutation c.943G>T leading to the amino acid substitution p.Ala315Ser was detected. Five affected family members showed craniofacial dysostosis without overt craniosynostosis. They all had midface hypoplasia. Crouzonoid appearance with mild protrusion of bulbi was only apparent in our index patient as well as obstructive sleep apnea episodes leading to reduced oxygen saturation; therefore, surgical intervention was suggested. One other affected family member additionally had iris coloboma.

20.
PLoS Genet ; 10(11): e1004578, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25375121

RESUMEN

The human sex chromosomes differ in sequence, except for the pseudoautosomal regions (PAR) at the terminus of the short and the long arms, denoted as PAR1 and PAR2. The boundary between PAR1 and the unique X and Y sequences was established during the divergence of the great apes. During a copy number variation screen, we noted a paternally inherited chromosome X duplication in 15 independent families. Subsequent genomic analysis demonstrated that an insertional translocation of X chromosomal sequence into the Y chromosome generates an extended PAR [corrected].The insertion is generated by non-allelic homologous recombination between a 548 bp LTR6B repeat within the Y chromosome PAR1 and a second LTR6B repeat located 105 kb from the PAR boundary on the X chromosome. The identification of the reciprocal deletion on the X chromosome in one family and the occurrence of the variant in different chromosome Y haplogroups demonstrate this is a recurrent genomic rearrangement in the human population. This finding represents a novel mechanism shaping sex chromosomal evolution.


Asunto(s)
Cromosomas Humanos X/genética , Cromosomas Humanos Y/genética , Evolución Molecular , Animales , Cromosomas/genética , Haplotipos , Hominidae/genética , Recombinación Homóloga/genética , Humanos , Polimorfismo Genético , Secuencias Repetitivas de Ácidos Nucleicos/genética , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...