Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 9(12)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38131905

RESUMEN

Because of the pronounced degradation of the environment, there has been an escalated demand for the fabrication of eco-friendly and highly efficient products derived from renewable sources. Cellulose aerogels have attracted significant interest attributable to their structural characteristics coupled with biodegradability and biocompatibility. The features of the molecular structure of cellulose allow for the use of various methods in the production of gels. For instance, the presence of hydroxyl groups on the cellulose surface allows for chemical crosslinking via etherification reactions. On the other hand, cellulose gel can be procured by modulating the solvent power of the solvent. In this study, we investigate the impact of the gelation methodology on the structural attributes of aerogels. We present methodologies for aerogel synthesis employing three distinct gelation techniques: chemical crosslinking, cryotropic gelation, and CO2-induced gelation. The outcomes encompass data derived from helium pycnometry, Fourier-transform infrared spectroscopy, nitrogen porosimetry, and scanning electron microscopy. The resultant specimens exhibited a mesoporous fibrous structure. It was discerned that specimens generated through cryotropic gelation and CO2-induced gelation manifested higher porosity (93-95%) and specific surface areas (199-413 m2/g) in contrast to those produced via chemical crosslinking (porosity 72-95% and specific surface area 25-133 m2/g). Hence, this research underscores the feasibility of producing cellulose-based aerogels with enhanced characteristics, circumventing the necessity of employing toxic cross-linking agents. The process of gel formation through chemical crosslinking enables the creation of gels with enhanced mechanical properties and a more resilient structure. Two alternative methodologies prove particularly advantageous in applications necessitating biocompatibility and high porosity. Notably, CO2-induced gelation has not been hitherto addressed in the literature as a means to produce cellulose gels. The distinctive feature of this approach resides in the ability to combine the stages of obtaining an aerogel in one apparatus.

2.
Gels ; 9(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37504445

RESUMEN

Direct ink writing (DIW) requires careful selection of ink composition with specific rheological properties, and it has limitations, such as the inability to create overhanging parts or branched geometries. This study presents an investigation into enhancing the 3D printing process through the use of a heterophase system, aiming to overcome these limitations. A modification was carried out in the 3D printer construction, involving adjustments to the structural elements responsible for the extrusion device's movement. Additionally, a method for obtaining a heterophase system based on gelatin microparticles was developed to enable the 3D printing process with the upgraded printer. The structure and rheological properties of the heterophase system, varying in gelatin concentration, were thoroughly examined. The material's viscosity ranged from 5.4 to 32.8 kPa·s, exhibiting thixotropic properties, pseudoplastic behavior, and long-term stability at 20 °C. The developed 3D printing technology was successfully implemented using a heterophase system based on different gelatin concentrations. The highest product quality was achieved with a heterophase system consisting of 4.5 wt.% gelatin, which exhibited a viscosity of 22.4 kPa·s, enabling the production of products without spreading or compromising geometrical integrity.

3.
Gels ; 8(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36547289

RESUMEN

The research was oriented towards the preparation of aerogel particles based on egg white and whey protein isolate using various dispersion methods: dripping, spraying, and homogenization. Based on the results of analytical studies, the most appropriate samples were selected to obtain aerogels loaded with the drug. The results of the experimental research were used to study methods for obtaining nasal drug delivery systems based on aerogels. Protein aerogels were obtained by thermal gelation followed by supercritical drying. The obtained particles of protein aerogels have a specific surface area of up to 350 m2/g with a pore volume of up to 2.9 cm3/g, as well as a porosity of up to 95%. The results of experimental studies have shown that changing the dispersion method makes it possible to control the structural characteristics of protein aerogel particles. The results of the studies were applied to obtain innovative nasal drug delivery systems for the treatment of socially significant diseases. Analytical studies were conducted to determine the amount and state of adsorbed drugs in protein aerogel particles, as well as in vivo experiments on the distribution of clomipramine in blood plasma and brain tissue of rats to study the pharmacokinetics and bioavailability of the resulting drug-loaded protein aerogel.

4.
Gels ; 8(12)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36547320

RESUMEN

The nasal drug delivery route has distinct advantages, such as high bioavailability, a rapid therapeutic effect, non-invasiveness, and ease of administration. This article presents the results of a study of the processes for obtaining chitosan aerogel particles that are promising as nasal or inhalation drug delivery systems. Obtaining chitosan aerogel particles includes the following steps: the preparation of a chitosan solution, gelation, solvent replacement, and supercritical drying. Particles of chitosan gels were obtained by spraying and homogenization. The produced chitosan aerogel particles had specific surface areas of up to 254 m2/g, pore volumes of up to 1.53 cm3/g, and porosities of up to 99%. The aerodynamic diameters of the obtained chitosan aerogel particles were calculated, the values of which ranged from 13 to 59 µm. According to the calculation results, a CS1 sample was used as a matrix for obtaining the pharmaceutical composition "chitosan aerogel-clomipramine". X-ray diffraction (XRD) analysis of the pharmaceutical composition determined the presence of clomipramine, predominantly in an amorphous form. Analysis of the high-performance liquid chromatography (HPLC) data showed that the mass loading of clomipramine was 35%. Experiments in vivo demonstrated the effectiveness of the pharmaceutical composition "chitosan aerogel-clomipramine" as carrier matrices for the targeted delivery of clomipramine by the "Nose-to-brain" mechanism of nasal administration. The maximum concentration of clomipramine in the frontal cortex and hippocampus was reached 30 min after administration.

5.
Molecules ; 27(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36014461

RESUMEN

A new luminescent hybrid material based on silica aerogel and a boron-containing coordination compound with 8-hydroxyquinoline was created, and its physicochemical and spectral-luminescent characteristics were studied. A simple scheme for the synthesis of a hybrid luminescent material was developed. Simultaneously with the synthesis of the aerogel, the formation of a boron-containing phosphor was carried out using an isopropanol solution of boric acid and 8-hydroxyquinoline. Using in situ luminescent measurements, the mechanisms of the formation of boron-based luminescent complexes in isopropanol and tetrahydrofuran media were established. Both hydrophilic and hydrophobic silica aerogels were tested as matrices for the hybrid material. The formation of a thin layer of a boron-containing coordination luminescent compound on the highly developed surface of the SiO2 aerogel made it possible to strongly stabilize the aerogel structure and noticeably increase the thermal stability of the synthesized hybrid material.

6.
Microorganisms ; 10(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35630373

RESUMEN

The diversity and the stability of the microbial community are associated with microecological interactions between its members. Antagonism is one type of interaction, which particularly determines the benefits that probiotics bring to host health by suppressing opportunistic pathogens and microbial contaminants in food. Mathematical models allow for quantitatively predicting intrapopulation relationships. The aim of this study was to create predictive models for bacterial contamination outcomes depending on the probiotic antagonism and prebiotic concentration. This should allow an improvement in the screening of synbiotic composition for preventing gut microbial infections. The functional model (fermentation) was based on a three-stage continuous system, and the distal colon section (N2, pH 6.8, flow rate 0.04 h-1) was simulated. The strains Bifidobacterium adolescentis ATCC 15703 and Bacillus cereus ATCC 9634 were chosen as the model probiotic and pathogen. Oligofructose Orafti P95 (OF) was used as the prebiotic at concentrations of 2, 5, 7, 10, 12, and 15 g/L of the medium. In the first stage, the system was inoculated with Bifidobacterium, and a dynamic equilibrium (Bifidobacterium count, lactic, and acetic acids) was achieved. Then, the system was contaminated with a 3-day Bacillus suspension (spores). The microbial count, as well as the concentration of acids and residual carbohydrates, was measured. A Bacillus monoculture was studied as a control. The stationary count of Bacillus in monoculture was markedly higher. An increase (up to 8 h) in the lag phase was observed for higher prebiotic concentrations. The specific growth rate in the exponential phase varied at different OF concentrations. Thus, the OF concentration influenced two key events of bacterial infection, which together determine when the maximal pathogen count will be reached. The mathematical models were developed, and their accuracies were acceptable for Bifidobacterium (relative errors ranging from 1.00% to 2.58%) and Bacillus (relative errors ranging from 0.74% to 2.78%) count prediction.

7.
J Funct Biomater ; 12(4)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34698183

RESUMEN

The creation of artificial biocomposites consisting of biocompatible materials in combination with bioactive molecules is one of the main tasks of tissue engineering. The development of new materials, which are biocompatible, functional, and also biodegradable in vivo, is a specific problem. Two types of products can be formed from these materials in the processes of biodegradation. The first types of substances are natural for a living organism and are included in the metabolism of cells, for example, sugars, lactic, glycolic, and ß-hydroxybutyric acids. Substances that are not metabolized by cells represent the other type. In the latter case, such products should not be toxic, and their concentration when entering the bloodstream should not exceed the established maximum permissible level. The composite materials based on a mixture of biodegradable synthetic and natural polymers with the addition of hydroxyapatite nanoparticles, which acts as a stabilizer of the dispersed system during production of the composite, and which is a biologically active component of the resulting matrix, were obtained and studied. The indirect effect of the shape, size, and surface charge of hydroxyapatite nanoparticles on the structure and porosity of the formed matrix was shown. An in vivo study showed the absence of acute toxicity of the developed composites.

8.
Polymers (Basel) ; 13(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34372113

RESUMEN

In this work, a cellular automata approach was investigated for modeling three-dimensional fibrous nanoporous aerogel structures. A model for the generation of fibrous structures using the Bezier curves is proposed. Experimental chitosan-based aerogel particles were obtained for which analytical studies of the structural characteristics were carried out. The data obtained were used to generate digital copies of chitosan-based aerogel structures and to assess the accuracy of the developed model. The obtained digital copies of chitosan-based aerogel structures will be used to create digital copies of aerogel structures with embedded active pharmaceutical ingredients (APIs) and further predict the release of APIs from these structures.

9.
Gels ; 7(3)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34287289

RESUMEN

Three-dimensional (3D) printing is a promising technology for solving a wide range of problems: regenerative medicine, tissue engineering, chemistry, etc. One of the potential applications of additive technologies is the production of highly porous structures with complex geometries, while printing is carried out using gel-like materials. However, the implementation of precise gel printing is a difficult task due to the high requirements for "ink". In this paper, we propose the use of gel-like materials based on sodium alginate as "ink" for the implementation of the developed technology of extrusion-based 3D printing. Rheological studies were carried out for the developed alginate ink compositions. The optimal rheological properties are gel-like materials based on 2 wt% sodium alginate and 0.2 wt% calcium chloride. The 3D-printed structures with complex geometry were successfully dried using supercritical drying. The resulting aerogels have a high specific surface area (from 350 to 422 m2/g) and a high pore volume (from 3 to 3.78 cm3/g).

10.
Microorganisms ; 9(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926121

RESUMEN

A number of mechanisms have been proposed explaining probiotics and prebiotics benefit human health, in particular, probiotics have a suppression effect on pathogen growth that can be enhanced with the introduction of prebiotics. In vitro models enhanced with computational biology can be useful for selecting a composition with prebiotics from new plant sources with the greatest synergism. Water extracts from burdock root and Jerusalem artichoke tubers were purified by ultrafiltration and activated charcoal and concentrated on a rotary evaporator. Fructans were precipitated with various concentrations of ethanol. Bifidobacterium bifidum 8 VKPM AC-2136 and Staphylococcus aureus ATCC 43300 strains were applied to estimate the synbiotic effect. The growth of bifidobacteria and staphylococci in monocultures and cocultures in broths with glucose, commercial prebiotics, as well as isolated fructans were studied. The minimum inhibitory concentrations (MICs) of lactic and acetic acids for the Staphylococcus strain were determined. A quantitative model joining the formation of organic acids by probiotics as antagonism factors and the MICs of pathogens (as the measure of their inhibition) was tested in cocultures and showed a high predictive value (R2 ≥ 0.86). The synbiotic factor obtained from the model was calculated based on the experimental data and obtained constants. Fructans precipitated with 20% ethanol and Bifidobacterium bifidum have the greater synergism against Staphylococcus.

11.
Gels ; 6(4)2020 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-33081053

RESUMEN

In this work, a cellular automata (CA) approach was used to generate 3D structures of polyamide and carbon aerogels. Experimental results are used as initial data for materials' digital representations and to verify the developed CA models. Based on the generated digital structures, a computer study of aerogels' mechanical properties was conducted. The offered CA models can be applied for the development of new nanoporous materials such as aerogels of different nature and allow for a reduction in the amount of required full-scale experiments, consequently decreasing development time and costs of new material formulations.

12.
Polymers (Basel) ; 12(9)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927608

RESUMEN

Chitosan aerogels with potential applications as effective local hemostatic agents were prepared using supercritical carbon dioxide drying to preserve the chitosan network structure featuring high internal surfaces and porosities of up to 300 m²/g and 98%, respectively. For the first time, hemostatic efficacy of chitosan-based aerogel particles was studied in vivo on a model of damage of a large vessel in the deep wound. Pigs were used as test animals. It was shown that primary hemostasis was achieved, there were no signs of rebleeding and aerogel particles were tightly fixed to the walls of the wound canal. A dense clot was formed inside the wound (at the femoral artery), which indicates stable hemostasis. This study demonstrated that chitosan-based aerogel particles have a high sorption capacity and are highly effective as local hemostatic agents which can be used to stop massive bleeding.

13.
Polymers (Basel) ; 12(9)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872406

RESUMEN

The kinetics of the supercritical adsorption process was experimentally studied by the example of "ibuprofen-silica aerogel" composition obtainment at various parameters: Pressure 120-200 bar and temperature 40-60 °C. Computational Fluid Dynamics (CFD) model of the supercritical adsorption process in a high-pressure apparatus based on the provisions of continuum mechanics is proposed. Using supercritical adsorption process kinetics experimental data, the dependences of the effective diffusion coefficient of active substance in the aerogel, and the maximum amount of the adsorbed active substance into the aerogel on temperature and pressure are revealed. Adequacy of the proposed model is confirmed. The proposed mathematical model allows predicting the behavior of system (fields of velocity, temperature, pressure, composition, density, etc.) at each point of the studied medium. It makes possible to predict mass transport rate of the active substance inside the porous body depending on the geometry of the apparatus, structure of flow, temperature, and pressure.

14.
Annu Rev Chem Biomol Eng ; 11: 87-108, 2020 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-32513081

RESUMEN

We review the modern state of cellular automata (CA) applications for solving practical problems in chemistry and chemical technology. We consider the problems of material structure modeling and prediction of materials' morphology-dependent properties. We review the use of the CA approach for modeling diffusion, crystallization, dissolution, erosion, corrosion, adsorption, and hydration processes. We also consider examples of hybrid CA-based models, which are combinations of various CA with other computational approaches and modeling methods. Finally, we discuss the use of high-performance parallel computing to increase the efficiency of CA.


Asunto(s)
Ingeniería Química , Modelos Teóricos , Adsorción , Catálisis , Corrosión , Cristalización , Difusión
15.
Materials (Basel) ; 13(2)2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31936834

RESUMEN

The present work focuses on the preparation of alginate-based aerogels in the form of particles for their further study as potential drug delivery systems (solid dosage forms). The dripping method was used to prepare certain gel particles, and supercritical drying was used to obtain final alginate-based aerogel particles. Three model active substances (ketoprofen, nimesulide, loratadine) were impregnated into the obtained aerogels using the supercritical adsorption process. Using the method of X-ray analysis, it was shown that the in the obtained drug-loaded aerogels the corresponding active substances are in an amorphous state, and the stability of this state after six months of storage is confirmed. In vitro dissolution tests for obtained drug-loaded aerogels was performed. For each sample, an appropriate dissolution medium (with certain pH) was determined. In vitro investigations showed the increasing of the release rate for all model active substances. Time was required to release and dissolve 50% of the active drug from drug-loaded aerogels (T1/2), reduced in comparison with pure active drugs in crystalline form. Obtained results provide insight into the application of alginate-based aerogel particles as a drug delivery system to improve pharmacokinetic properties of certain active drugs.

16.
Bioprocess Biosyst Eng ; 43(3): 549-567, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31786664

RESUMEN

The hollow fiber membrane bioreactor (HFMB) has been investigated for the cultivation of mammalian Chinese hamster ovary cell expansion. The experiments were carried out in Petri's dishes and in the hollow fiber membrane bioreactor having 20 fibers (S2025 from FiberCell Systems). The approach to HFMB modelling which combines the model of cell growth kinetics and hydrodynamics has been proposed. The hydrodynamic model is made using ANSYS Fluent software. The mathematical model of HFMB was developed, allowing the study of the hydrodynamics into the lumen and the extracapillary spaces, the filtration through the membrane fiber with the cell expansion on outer membrane surface. The direct nutrient medium flow variant into the extracapillary space was suggested. Based on the numerical simulations, the optimal parameters were selected for daily changes in the medium flow-rate into the lumen space. The HFMB scaling up was performed for the larger size HFMB (60 fibers).


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Membranas Artificiales , Modelos Teóricos , Animales , Células CHO , Cricetinae , Cricetulus
17.
World J Microbiol Biotechnol ; 35(6): 89, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31134431

RESUMEN

The present study is dedicated to the development of novel criteria for assessing the synbiotic effect of prebiotic and probiotic composition against a specific pathogen. These criteria were obtained from the quantitative model of Bifidobacterium adolescentis ATCC 15703 and Bacillus cereus ATCC 9634 (as a model food contaminant) competition in co-culture fermentation. The model is based on the hypothesis that probiotics can reduce the specific growth rate of non-probiotics by producing short-chain fatty acids. To define the relationship between the specific growth rate of non-probiotics and short-chain fatty acid yields, the inhibition constants were determined separately for each inhibitor produced by bifidobacteria (lactic, acetic and propionic acids) in a pure culture of bacilli. Two different equations based on the minimum inhibitor concentration (MIC) and inhibition constant (Ki) were used to connect the specific growth rate and concentrations of inhibitors. The yields of the inhibitors mentioned above were obtained from co-culture experiments. The experimental values and the values predicted by the model of Bacillus count did not differ significantly (R2 not less than 0.83) in the competition experiments. Therefore, the general criterion of the synbiotic effect was derived from the model and presents the coefficient of non-probiotic specific growth rate reduction as a result of probiotic growth and inhibitor formation in the final co-culture fermentation. This criterion has been examined for different commercial prebiotics coupled with the Bifidobacterium adolescentis strain. The synergistic combination of inulin GR with bifidobacteria had the best effect against Bacillus cereus ATCC 9634.


Asunto(s)
Bacillus cereus/crecimiento & desarrollo , Bifidobacterium/fisiología , Simbióticos , Ácido Acético , Antibiosis , Bacillus cereus/efectos de los fármacos , Bacteriocinas/aislamiento & purificación , Técnicas de Cocultivo , Ácidos Grasos Volátiles/farmacología , Fermentación , Contaminación de Alimentos , Concentración de Iones de Hidrógeno , Inulina , Cinética , Ácido Láctico , Pruebas de Sensibilidad Microbiana , Prebióticos , Probióticos , Propionatos
18.
Materials (Basel) ; 12(1)2018 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-30586902

RESUMEN

The manuscript describes methods for producing hybrid silica microparticles and hybrid alginate beads with carbon nanotube (CNT) contents up to 4.5 and 30 wt.%, respectively. Silica hybrid aerogel microparticles with embedded nanotubes were obtained using a two-stage sol⁻gel method with a gelling process in an oil-emulsion. Alginate hybrid aerogels with embedded nanotubes were obtained using cross-linking reactions. The following methods were used to measure the structural characteristics of obtained materials: nitrogen adsorption porosimetry, scanning electron microscopy (SEM), and others. It is shown that specific surface area and pore volume increase with the increase of CNT content in silica aerogel microparticles. Obtained aerogels were tested as adsorbents for argon⁻oxygen separation. The alginate hybrid aerogel with 30 wt.% CNT content has the best argon adsorption selectivity.

19.
Sci Rep ; 7(1): 12640, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974745

RESUMEN

We have prepared photocatalytic systems based on tetraphenylporphyrins (TPP) immobilized on calcium alginate solid gels in the conditions of thermal drying on air (xerogel), freeze drying in vacuum (cryogel) and supercritical drying in the supercritical carbon dioxide (scCO2) medium (aerogel). As a test reaction to measure the prepared systems' efficiency, we studied tryptophan photooxidation in the aqueous medium. We have demonstrated that the systems with aerogel as a carrier exhibited the highest photocatalytic efficiency. In that case, the rate constant for the test substrate (tryptophan) oxidation exceeds the corresponding rate constants of similar systems based on xerogel and cryogel by more than 5 times. Moreover, the aerogel-based photocatalytic systems demonstrated enhanced functional stability and a possibility of multiple use of such a catalyst in tryptophan oxidation. Based on the data of small-angle X-ray scattering and thermooxidative destruction, we have made a conclusion about the relationship between the high photocatalytic activity of aerogel-immobilized TPP and formation of a developed porous aerogel structure in the conditions of drying in the scCO2 medium, which is stabilized due to formation of additional complex bonds of calcium ions with fragments of glycoside rings.

20.
Int J Pharm ; 296(1-2): 44-54, 2005 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-15885454

RESUMEN

The interaction of liposome formulations, prepared with phospholipids of different origins (egg and soya), with skin were compared in terms of their effects on skin water content, skin barrier function, and skin elasticity. Short-term effect of four different liposome formulations and two references during 3.5 h was investigated non-occlusively on the volar side of the forearm of 10 volunteers, ranging in age from 24 to 32 years. Liposomes composed of different phospholipids showed differing effects on skin humidity. The maximal effect was achieved within 30 min and constant values were reached after 1.5 h for all formulations, however values remained significantly higher than without treatment (p<0.05) during the whole application time. The best results were obtained with liposome formulations prepared from egg phospholipids, which exhibited a 1.5-fold increase in skin water content (p<0.05), whereas liposome formulations prepared from soya phospholipids showed no advantage compared to the references. Skin barrier function showed greatest influence within 30 min after application and remained constant after 1.5 h for all formulations. Within the liposome formulations, egg phospholipids showed the highest transepidermal water loss values during the first 30 min, representing the strongest interactions with the skin barrier function, whereas for the other liposome formulations lower transepidermal water loss values were measured. Skin elasticity and tiring effect of the skin was not influenced by any of the formulations, due to the young skin tested. Long-term effect of two different liposome formulations mixed with base cream DAC in two different concentrations during 14 days was investigated non-occlusively on the volar side of the forearm of 10 volunteers, ranging in age from 20 to 25 years. Skin water content was measured daily and the results showed that skin humidity was increased significantly (p<0.05) for the formulation containing 20% egg phospholipids during 6 days. Liposome formulations prepared with egg phospholipids showed significantly higher (p<0.01) hydration effects during 3.5 h of application on human skin compared with liposome formulations prepared with soya phospholipids.


Asunto(s)
Cosméticos/administración & dosificación , Liposomas/administración & dosificación , Adulto , Análisis de Varianza , Química Farmacéutica , Cosméticos/química , Cosméticos/farmacocinética , Femenino , Humanos , Liposomas/química , Liposomas/farmacocinética , Masculino , Piel/efectos de los fármacos , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...