Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Sci Rep ; 13(1): 21514, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057452

RESUMEN

It is known that the rate of caesarean section (C-section) has been increasing among preterm births. However, the relationship between C-section and long-term neurological outcomes is unclear. In this study, we utilized diffusion tensor imaging (DTI) to characterize the association of delivery method with brain white matter (WM) microstructural integrity in preterm infants. We retrospectively analyzed the DTI scans and health records of preterm infants without neuroimaging abnormality on pre-discharge term-equivalent MRI. We applied both voxel-wise and tract-based analyses to evaluate the association between delivery method and DTI metrics across WM tracts while controlling for numerous covariates. We included 68 preterm infants in this study (23 delivered vaginally, 45 delivered via C-section). Voxel-wise and tract-based analyses revealed significantly lower fractional anisotropy values and significantly higher diffusivity values across major WM tracts in preterm infants delivered via C-section when compared to those delivered vaginally. These results may be partially, but not entirely, mediated by lower birth weight among infants delivered by C-section. Nevertheless, these infants may be at risk for delayed neurodevelopment and could benefit from close neurological follow up for early intervention and mitigation of adverse long-term outcomes.


Asunto(s)
Recien Nacido Prematuro , Sustancia Blanca , Embarazo , Lactante , Humanos , Recién Nacido , Femenino , Imagen de Difusión Tensora/métodos , Encéfalo/diagnóstico por imagen , Cesárea , Estudios Retrospectivos , Sustancia Blanca/diagnóstico por imagen
2.
Res Sq ; 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37886582

RESUMEN

It is known that the rate of caesarean section (C-section) has been increasing among preterm births. However, the relationship between C-section and long-term neurological outcomes is unclear. In this study, we utilized diffusion tensor imaging (DTI) to characterize the association of delivery method with brain white matter (WM) microstructural integrity in preterm infants. We retrospectively analyzed the DTI scans and health records of preterm infants without neuroimaging abnormality on pre-discharge term-equivalent MRI. We applied both voxel-wise and tract-based analyses to evaluate the association between delivery method and DTI metrics across WM tracts while controlling for numerous covariates. We included 68 preterm infants in this study (23 delivered vaginally, 45 delivered via C-section). Voxel-wise and tract-based analyses revealed significantly lower fractional anisotropy values and significantly higher diffusivity values across major WM tracts in preterm infants delivered via C-section when compared to those delivered vaginally. These results may be partially, but not entirely, mediated by lower birth weight among infants delivered by C-section. Nevertheless, these infants may be at risk for delayed neurodevelopment and could benefit from close neurological follow up for early intervention and mitigation of adverse long-term outcomes.

3.
JAMA Netw Open ; 6(5): e2314193, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37200030

RESUMEN

Importance: Aside from widely known cardiovascular implications, higher weight in children may have negative associations with brain microstructure and neurodevelopment. Objective: To evaluate the association of body mass index (BMI) and waist circumference with imaging metrics that approximate brain health. Design, Setting, and Participants: This cross-sectional study used data from the Adolescent Brain Cognitive Development (ABCD) study to examine the association of BMI and waist circumference with multimodal neuroimaging metrics of brain health in cross-sectional and longitudinal analyses over 2 years. From 2016 to 2018, the multicenter ABCD study recruited more than 11 000 demographically representative children aged 9 to 10 years in the US. Children without any history of neurodevelopmental or psychiatric disorders were included in this study, and a subsample of children who completed 2-year follow-up (34%) was included for longitudinal analysis. Exposures: Children's weight, height, waist circumference, age, sex, race and ethnicity, socioeconomic status, handedness, puberty status, and magnetic resonance imaging scanner device were retrieved and included in the analysis. Main Outcomes and Measures: Association of preadolescents' BMI z scores and waist circumference with neuroimaging indicators of brain health: cortical morphometry, resting-state functional connectivity, and white matter microstructure and cytostructure. Results: A total of 4576 children (2208 [48.3%] female) at a mean (SD) age of 10.0 years (7.6 months) were included in the baseline cross-sectional analysis. There were 609 (13.3%) Black, 925 (20.2%) Hispanic, and 2565 (56.1%) White participants. Of those, 1567 had complete 2-year clinical and imaging information at a mean (SD) age of 12.0 years (7.7 months). In cross-sectional analyses at both time points, higher BMI and waist circumference were associated with lower microstructural integrity and neurite density, most pronounced in the corpus callosum (fractional anisotropy for BMI and waist circumference at baseline and second year: P < .001; neurite density for BMI at baseline: P < .001; neurite density for waist circumference at baseline: P = .09; neurite density for BMI at second year: P = .002; neurite density for waist circumference at second year: P = .05), reduced functional connectivity in reward- and control-related networks (eg, within the salience network for BMI and waist circumference at baseline and second year: P < .002), and thinner brain cortex (eg, for the right rostral middle frontal for BMI and waist circumference at baseline and second year: P < .001). In longitudinal analysis, higher baseline BMI was most strongly associated with decelerated interval development of the prefrontal cortex (left rostral middle frontal: P = .003) and microstructure and cytostructure of the corpus callosum (fractional anisotropy: P = .01; neurite density: P = .02). Conclusions and Relevance: In this cross-sectional study, higher BMI and waist circumference among children aged 9 to 10 years were associated with imaging metrics of poorer brain structure and connectivity as well as hindered interval development. Future follow-up data from the ABCD study can reveal long-term neurocognitive implications of excess childhood weight. Imaging metrics that had the strongest association with BMI and waist circumference in this population-level analysis may serve as target biomarkers of brain integrity in future treatment trials of childhood obesity.


Asunto(s)
Benchmarking , Obesidad Infantil , Adolescente , Humanos , Niño , Femenino , Masculino , Índice de Masa Corporal , Estudios Transversales , Circunferencia de la Cintura , Aumento de Peso , Neuroimagen , Encéfalo/diagnóstico por imagen
4.
Front Neurosci ; 17: 1138670, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908780

RESUMEN

Objectives: Leveraging a large population-level morphologic, microstructural, and functional neuroimaging dataset, we aimed to elucidate the underlying neurobiology of attention-deficit hyperactivity disorder (ADHD) in children. In addition, we evaluated the applicability of machine learning classifiers to predict ADHD diagnosis based on imaging and clinical information. Methods: From the Adolescents Behavior Cognitive Development (ABCD) database, we included 1,798 children with ADHD diagnosis and 6,007 without ADHD. In multivariate logistic regression adjusted for age and sex, we examined the association of ADHD with different neuroimaging metrics. The neuroimaging metrics included fractional anisotropy (FA), neurite density (ND), mean-(MD), radial-(RD), and axial diffusivity (AD) of white matter (WM) tracts, cortical region thickness and surface areas from T1-MPRAGE series, and functional network connectivity correlations from resting-state fMRI. Results: Children with ADHD showed markers of pervasive reduced microstructural integrity in white matter (WM) with diminished neural density and fiber-tracks volumes - most notable in the frontal and parietal lobes. In addition, ADHD diagnosis was associated with reduced cortical volume and surface area, especially in the temporal and frontal regions. In functional MRI studies, ADHD children had reduced connectivity among default-mode network and the central and dorsal attention networks, which are implicated in concentration and attention function. The best performing combination of feature selection and machine learning classifier could achieve a receiver operating characteristics area under curve of 0.613 (95% confidence interval = 0.580-0.645) to predict ADHD diagnosis in independent validation, using a combination of multimodal imaging metrics and clinical variables. Conclusion: Our study highlights the neurobiological implication of frontal lobe cortex and associate WM tracts in pathogenesis of childhood ADHD. We also demonstrated possible potentials and limitations of machine learning models to assist with ADHD diagnosis in a general population cohort based on multimodal neuroimaging metrics.

5.
Front Neurosci ; 17: 1132173, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845429

RESUMEN

Objective: To assess the feasibility of a point-of-care 1-Tesla MRI for identification of intracranial pathologies within neonatal intensive care units (NICUs). Methods: Clinical findings and point-of-care 1-Tesla MRI imaging findings of NICU patients (1/2021 to 6/2022) were evaluated and compared with other imaging modalities when available. Results: A total of 60 infants had point-of-care 1-Tesla MRI; one scan was incompletely terminated due to motion. The average gestational age at scan time was 38.5 ± 2.3 weeks. Transcranial ultrasound (n = 46), 3-Tesla MRI (n = 3), or both (n = 4) were available for comparison in 53 (88%) infants. The most common indications for point-of-care 1-Tesla MRI were term corrected age scan for extremely preterm neonates (born at greater than 28 weeks gestation age, 42%), intraventricular hemorrhage (IVH) follow-up (33%), and suspected hypoxic injury (18%). The point-of-care 1-Tesla scan could identify ischemic lesions in two infants with suspected hypoxic injury, confirmed by follow-up 3-Tesla MRI. Using 3-Tesla MRI, two lesions were identified that were not visualized on point-of-care 1-Tesla scan: (1) punctate parenchymal injury versus microhemorrhage; and (2) small layering IVH in an incomplete point-of-care 1-Tesla MRI with only DWI/ADC series, but detectable on the follow-up 3-Tesla ADC series. However, point-of-care 1-Tesla MRI could identify parenchymal microhemorrhages, which were not visualized on ultrasound. Conclusion: Although limited by field strength, pulse sequences, and patient weight (4.5 kg)/head circumference (38 cm) restrictions, the Embrace® point-of-care 1-Tesla MRI can identify clinically relevant intracranial pathologies in infants within a NICU setting.

7.
J Neuroimaging ; 33(1): 79-84, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36164277

RESUMEN

BACKGROUND AND PURPOSE: Topographic patterns of brain injury in neonates can help with differentiation and prognostic categorization of hypoxic ischemic encephalopathy (HIE). In this study, we quantitatively and objectively characterized the location of hypoxic ischemic lesions in term neonates with varying severity of HIE. METHODS: We analyzed term neonates (born ≥37 postmenstrual gestational weeks) with MRI diffusion-weighted imaging (DWI) and diagnoses of HIE. Neonates' HIE was categorized into mild, moderate, and severe. The hypoxic ischemic lesions were segmented on DWI series with attention to T1- and T2-weighted images and then co-registered onto standard brain space to generate summation maps for each severity category. Applying voxel-wise general linear models, we also identified cerebral regions more likely to infarct with increasing severity of HIE, after correction for lesion volume and time-to-scan as covariates. RESULTS: We included 33 neonates: 20 with mild, eight with moderate, and five with severe HIE. Infarct volumes (p = .00052) and Appearance, Pulse, Grimace, Activity, and Respiration scores at 1 minute (p = .032) differed between HIE severity categories. Hypoxic ischemic lesions in neonates with mild and moderate HIE were predominant in subcortical and deep white matter along the border zones of arterial supply territories, while severe HIE also involved basal ganglia, hippocampus, and thalamus. In voxel-wise analysis, higher severity of HIE was associated with the presence of lesions in hippocampus, thalamus, and lentiform nucleus. CONCLUSIONS: In term neonates, mild/moderate HIE is associated with infarctions of arterial territory watershed zones, whereas severe HIE distinctively involves basal ganglia, thalami, and hippocampi.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Recién Nacido , Humanos , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Lesiones Encefálicas/patología , Infarto/patología
8.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203602

RESUMEN

Up to 50% of patients with severe congenital heart disease (CHD) develop life-altering neurodevelopmental disability (NDD). It has been presumed that NDD arises in CHD cases because of hypoxia before, during, or after cardiac surgery. Recent studies detected an enrichment in de novo mutations in CHD and NDD, as well as significant overlap between CHD and NDD candidate genes. However, there is limited evidence demonstrating that genes causing CHD can produce NDD independent of hypoxia. A patient with hypoplastic left heart syndrome and gross motor delay presented with a de novo mutation in SMC5. Modeling mutation of smc5 in Xenopus tropicalis embryos resulted in reduced heart size, decreased brain length, and disrupted pax6 patterning. To evaluate the cardiac development, we induced the conditional knockout (cKO) of Smc5 in mouse cardiomyocytes, which led to the depletion of mature cardiomyocytes and abnormal contractility. To test a role for Smc5 specifically in the brain, we induced cKO in the mouse central nervous system, which resulted in decreased brain volume, and diminished connectivity between areas related to motor function but did not affect vascular or brain ventricular volume. We propose that genetic factors, rather than hypoxia alone, can contribute when NDD and CHD cases occur concurrently.


Asunto(s)
Cardiopatías Congénitas , Humanos , Animales , Ratones , Cardiopatías Congénitas/genética , Encéfalo , Ventrículos Cardíacos , Hipoxia , Miocitos Cardíacos , Xenopus , Proteínas Cromosómicas no Histona , Proteínas de Ciclo Celular/genética , Proteínas de Xenopus
9.
Sci Rep ; 12(1): 16230, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171268

RESUMEN

Altered resting state functional connectivity (FC) involving the anterior insula (aINS), a key node in the salience network, has been reported consistently in autism. Here we examined, for the first time, FC between the aINS and the whole brain in a sample of full-term, postmenstrual age (PMA) matched neonates (mean 44.0 weeks, SD = 1.5) who due to family history have high likelihood (HL) for developing autism (n = 12) and in controls (n = 41) without family history of autism (low likelihood, LL). Behaviors associated with autism were evaluated between 12 and 18 months (M = 17.3 months, SD = 2.5) in a subsample (25/53) of participants using the First Year Inventory (FYI). Compared to LL controls, HL neonates showed hypoconnectivity between left aINS and left amygdala. Lower connectivity between the two nodes was associated with higher FYI risk scores in the social domain (r(25) = -0.561, p = .003) and this association remained robust when maternal mental health factors were considered. Considering that a subsample of LL participants (n = 14/41) underwent brain imaging during the fetal period at PMA 31 and 34 weeks, in an exploratory analysis, we evaluated prospectively development of the LaINS-Lamy connectivity and found that the two areas strongly coactivate throughout the third trimester of pregnancy. The study identifies left lateralized anterior insula-amygdala connectivity as a potential target of further investigation into neural circuitry that enhances likelihood of future onset of social behaviors associated with autism during neonatal and potentially prenatal periods.


Asunto(s)
Imagen por Resonancia Magnética , Cambio Social , Amígdala del Cerebelo/diagnóstico por imagen , Encéfalo , Mapeo Encefálico , Femenino , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética/métodos , Vías Nerviosas , Embarazo
10.
Hum Brain Mapp ; 43(14): 4326-4334, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35599634

RESUMEN

Accelerated maturation of brain parenchyma close to term-equivalent age leads to rapid changes in diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) metrics of neonatal brains, which can complicate the evaluation and interpretation of these scans. In this study, we characterized the topography of age-related evolution of diffusion metrics in neonatal brains. We included 565 neonates who had MRI between 0 and 3 months of age, with no structural or signal abnormality-including 162 who had DTI scans. We analyzed the age-related changes of apparent diffusion coefficient (ADC) values throughout brain and DTI metrics (fractional anisotropy [FA] and mean diffusivity [MD]) along white matter (WM) tracts. Rate of change in ADC, FA, and MD values across 5 mm cubic voxels was calculated. There was significant reduction of ADC and MD values and increase of FA with increasing gestational age (GA) throughout neonates' brain, with the highest temporal rates in subcortical WM, corticospinal tract, cerebellar WM, and vermis. GA at birth had significant effect on ADC values in convexity cortex and corpus callosum as well as FA/MD values in corpus callosum, after correcting for GA at scan. We developed online interactive atlases depicting age-specific normative values of ADC (ages 34-46 weeks), and FA/MD (35-41 weeks). Our results show a rapid decrease in diffusivity metrics of cerebral/cerebellar WM and vermis in the first few weeks of neonatal age, likely attributable to myelination. In addition, prematurity and low GA at birth may result in lasting delay in corpus callosum myelination and cerebral cortex cellularity.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Anisotropía , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Preescolar , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
11.
Cereb Cortex ; 32(15): 3289-3301, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34875024

RESUMEN

Although the neural scaffolding for language is putatively present before birth, the maturation of functional connections among the key nodes of the language network, Broca's and Wernicke's areas, is less known. We leveraged longitudinal and cross-sectional data from three sites collected through six studies to track the development of functional circuits between Broca's and Wernicke's areas from 30 weeks of gestation through 30 months of age in 127 unique participants. Using resting-state fMRI data, functional connectivity was calculated as the correlation between fMRI time courses from pairs of regions, defined as Broca's and Wernicke's in both hemispheres. The primary analysis evaluated 23 individuals longitudinally imaged from 30 weeks postmenstrual age (fetal) through the first postnatal month (neonatal). A secondary analysis in 127 individuals extended these curves into older infants and toddlers. These data demonstrated significant growth of interhemispheric connections including left Broca's and its homolog and left Wernicke's and its homolog from 30 weeks of gestation through the first postnatal month. In contrast, intrahemispheric connections did not show significant increases across this period. These data represent an important baseline for language systems in the developing brain against which to compare those neurobehavioral disorders with the potential fetal onset of disease.


Asunto(s)
Encéfalo , Lenguaje , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Estudios Transversales , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética/métodos , Embarazo
12.
J Pediatr ; 239: 248-249, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34390695
15.
Sci Rep ; 10(1): 7046, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341405

RESUMEN

Congenital heart disease (CHD) survivors are at risk for neurodevelopmental disability (NDD), and recent studies identify genes associated with both disorders, suggesting that NDD in CHD survivors may be of genetic origin. Genes contributing to neurogenesis, dendritic development and synaptogenesis organize neural elements into networks known as the connectome. We hypothesized that NDD in CHD may be attributable to genes altering both neural connectivity and cardiac patterning. To assess the contribution of de novo variants (DNVs) in connectome genes, we annotated 229 published NDD genes for connectome status and analyzed data from 3,684 CHD subjects and 1,789 controls for connectome gene mutations. CHD cases had more protein truncating and deleterious missense DNVs among connectome genes compared to controls (OR = 5.08, 95%CI:2.81-9.20, Fisher's exact test P = 6.30E-11). When removing three known syndromic CHD genes, the findings remained significant (OR = 3.69, 95%CI:2.02-6.73, Fisher's exact test P = 1.06E-06). In CHD subjects, the top 12 NDD genes with damaging DNVs that met statistical significance after Bonferroni correction (PTPN11, CHD7, CHD4, KMT2A, NOTCH1, ADNP, SMAD2, KDM5B, NSD2, FOXP1, MED13L, DYRK1A; one-tailed binomial test P ≤ 4.08E-05) contributed to the connectome. These data suggest that NDD in CHD patients may be attributable to genes that alter both cardiac patterning and the connectome.


Asunto(s)
Conectoma/métodos , Exoma/genética , Cardiopatías Congénitas/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Femenino , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Homeodominio/genética , Humanos , Masculino , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Mutación/genética , Mutación Missense/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas del Tejido Nervioso/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Receptor Notch1/genética
16.
Neuroimage Clin ; 21: 101626, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30545688

RESUMEN

Survivors of preterm birth experience long-lasting behavioral problems characterized by increased risk of depression, anxiety, and impairments in social functioning. The amygdala is a key region for social functioning and alterations in amygdala structure and connectivity are thought to underlie social functioning deficits in many disorders, including preterm birth. However, functional connectivity of the amygdala and its association with social impairments is not well-studied in preterm participants (PTs). In a group of late adolescents born very PT (600-1250 g birth weight), measures of social and emotional development were examined using the Child Behavior Checklist (CBCL) administered at age 16 (66 term and 161 preterm participants), the Youth Self Report (YSR) administered at age 16 (56 term and 45 preterm participants), and the Vineland Adaptive Behavior Scales (VABS) administered at age 18 (71 term and 190 preterm participants). Amygdala functional connectivity was also examined using resting-state functional magnetic resonance imaging at age 20 (17 term and 19 preterm participants). By parent report, preterm-born adolescents demonstrate increased social impairment compared to their term-born peers. Amygdala connectivity is altered for those prematurely-born, and markers of social functioning correlate with altered amygdala-PCC connectivity. These findings add to knowledge regarding the developmental trajectory of amygdala connectivity in PT and suggest a possible neural underpinning for the well-characterized social impairment experienced by prematurely-born individuals.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Conducta Social , Adolescente , Mapeo Encefálico , Desarrollo Infantil , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Masculino
17.
Sci Rep ; 7: 39286, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067865

RESUMEN

It has been suggested that neurological problems more frequent in those born preterm are expressed prior to birth, but owing to technical limitations, this has been difficult to test in humans. We applied novel fetal resting-state functional MRI to measure brain function in 32 human fetuses in utero and found that systems-level neural functional connectivity was diminished in fetuses that would subsequently be born preterm. Neural connectivity was reduced in a left-hemisphere pre-language region, and the degree to which connectivity of this left language region extended to right-hemisphere homologs was positively associated with the time elapsed between fMRI assessment and delivery. These results provide the first evidence that altered functional connectivity in the preterm brain is identifiable before birth. They suggest that neurodevelopmental disorders associated with preterm birth may result from neurological insults that begin in utero.


Asunto(s)
Encéfalo/embriología , Encéfalo/fisiología , Conectoma , Humanos , Imagen por Resonancia Magnética , Nacimiento Prematuro
18.
Cereb Cortex ; 27(1): 322-329, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28108493

RESUMEN

Adolescents born preterm (PT) with no evidence of neonatal brain injury are at risk of deficits in visual memory and fine motor skills that diminish academic performance. The association between these deficits and white matter microstructure is relatively unexplored. We studied 190 PTs with no brain injury and 92 term controls at age 16 years. The Rey-Osterrieth Complex Figure Test (ROCF), the Beery visual-motor integration (VMI), and the Grooved Pegboard Test (GPT) were collected for all participants, while a subset (40 PTs and 40 terms) underwent diffusion-weighted magnetic resonance imaging. PTs performed more poorly than terms on ROCF, VMI, and GPT (all P < 0.01). Mediation analysis showed fine motor skill (GPT score) significantly mediates group difference in ROCF and VMI (all P < 0.001). PTs showed a negative correlation (P < 0.05, corrected) between fractional anisotropy (FA) in the bilateral middle cerebellar peduncles and GPT score, with higher FA correlating to lower (faster task completion) GPT scores, and between FA in the right superior cerebellar peduncle and ROCF scores. PTs also had a positive correlation (P < 0.05, corrected) between VMI and left middle cerebellar peduncle FA. Novel strategies to target fine motor skills and the cerebellum may help PTs reach their full academic potential.


Asunto(s)
Cerebelo/fisiopatología , Memoria/fisiología , Destreza Motora/fisiología , Nacimiento Prematuro , Sustancia Blanca/fisiopatología , Adolescente , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Embarazo
19.
Cereb Cortex ; 27(1): 534-543, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26494796

RESUMEN

Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood.


Asunto(s)
Encéfalo/diagnóstico por imagen , Recien Nacido Prematuro , Adolescente , Encéfalo/crecimiento & desarrollo , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Recien Nacido Prematuro/crecimiento & desarrollo , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/crecimiento & desarrollo , Tamaño de los Órganos , Estudios Prospectivos , Adulto Joven
20.
Pediatr Res ; 81(1-2): 214-226, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27673421

RESUMEN

Human neurodevelopment requires the organization of neural elements into complex structural and functional networks called the connectome. Emerging data suggest that prenatal exposure to maternal stress plays a role in the wiring, or miswiring, of the developing connectome. Stress-related symptoms are common in women during pregnancy and are risk factors for neurobehavioral disorders ranging from autism spectrum disorder, attention deficit hyperactivity disorder, and addiction, to major depression and schizophrenia. This review focuses on structural and functional connectivity imaging to assess the impact of changes in women's stress-based physiology on the dynamic development of the human connectome in the fetal brain.


Asunto(s)
Conectoma , Trastorno Depresivo Mayor/fisiopatología , Complicaciones del Embarazo , Estrés Psicológico , Ansiedad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno del Espectro Autista/fisiopatología , Encéfalo/fisiopatología , Femenino , Enfermedades Fetales/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiopatología , Embarazo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA