Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 23(2): e14047, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994388

RESUMEN

Orexigenic neurons expressing agouti-related protein (AgRP) and neuropeptide Y in the arcuate nucleus (ARC) of the hypothalamus are activated in response to dynamic variations in the metabolic state, including exercise. We previously observed that carnitine palmitoyltransferase 1a (CPT1A), a rate-limiting enzyme of mitochondrial fatty acid oxidation, is a key factor in AgRP neurons, modulating whole-body energy balance and fluid homeostasis. However, the effect of CPT1A in AgRP neurons in aged mice and during exercise has not been explored yet. We have evaluated the physical and cognitive capacity of adult and aged mutant male mice lacking Cpt1a in AgRP neurons (Cpt1a KO). Adult Cpt1a KO male mice exhibited enhanced endurance performance, motor coordination, locomotion, and exploration compared with control mice. No changes were observed in anxiety-related behavior, cognition, and muscle strength. Adult Cpt1a KO mice showed a reduction in gastrocnemius and tibialis anterior muscle mass. The cross-sectional area (CSA) of these muscles were smaller than those of control mice displaying a myofiber remodeling from type II to type I fibers. In aged mice, changes in myofiber remodeling were maintained in Cpt1a KO mice, avoiding loss of physical capacity during aging progression. Additionally, aged Cpt1a KO mice revealed better cognitive skills, reduced inflammation, and oxidative stress in the hypothalamus and hippocampus. In conclusion, CPT1A in AgRP neurons appears to modulate health and protects against aging. Future studies are required to clarify whether CPT1A is a potential antiaging candidate for treating diseases affecting memory and physical activity.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Envejecimiento Saludable , Animales , Masculino , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo
2.
Metab Eng ; 77: 256-272, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37088334

RESUMEN

Obesity and its associated metabolic comorbidities are a rising global health and social issue, with novel therapeutic approaches urgently needed. Adipose tissue plays a key role in the regulation of energy balance and adipose tissue-derived mesenchymal stem cells (AT-MSCs) have gained great interest in cell therapy. Carnitine palmitoyltransferase 1A (CPT1A) is the gatekeeper enzyme for mitochondrial fatty acid oxidation. Here, we aimed to generate adipocytes expressing a constitutively active CPT1A form (CPT1AM) that can improve the obese phenotype in mice after their implantation. AT-MSCs were differentiated into mature adipocytes, subjected to lentivirus-mediated expression of CPT1AM or the GFP control, and subcutaneously implanted into mice fed a high-fat diet (HFD). CPT1AM-implanted mice showed lower body weight, hepatic steatosis and serum insulin and cholesterol levels alongside improved glucose tolerance. HFD-induced increases in adipose tissue hypertrophy, fibrosis, inflammation, endoplasmic reticulum stress and apoptosis were reduced in CPT1AM-implanted mice. In addition, the expression of mitochondrial respiratory chain complexes was enhanced in the adipose tissue of CPT1AM-implanted mice. Our results demonstrate that implantation of CPT1AM-expressing AT-MSC-derived adipocytes into HFD-fed mice improves the obese metabolic phenotype, supporting the future clinical use of this ex vivo gene therapy approach.


Asunto(s)
Intolerancia a la Glucosa , Animales , Ratones , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Inflamación/metabolismo , Obesidad/genética , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
3.
Biol Sex Differ ; 14(1): 14, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966335

RESUMEN

BACKGROUND: Fatty acid metabolism in the hypothalamus has an important role in food intake, but its specific role in AgRP neurons is poorly understood. Here, we examined whether carnitinea palmitoyltransferase 1A (CPT1A), a key enzyme in mitochondrial fatty acid oxidation, affects energy balance. METHODS: To obtain Cpt1aKO mice and their control littermates, Cpt1a(flox/flox) mice were crossed with tamoxifen-inducible AgRPCreERT2 mice. Food intake and body weight were analyzed weekly in both males and females. At 12 weeks of age, metabolic flexibility was determined by ghrelin-induced food intake and fasting-refeeding satiety tests. Energy expenditure was analyzed by calorimetric system and thermogenic activity of brown adipose tissue. To study fluid balance the analysis of urine and water intake volumes; osmolality of urine and plasma; as well as serum levels of angiotensin and components of RAAS (renin-angiotensin-aldosterone system) were measured. At the central level, changes in AgRP neurons were determined by: (1) analyzing specific AgRP gene expression in RiboTag-Cpt1aKO mice obtained by crossing Cpt1aKO mice with RiboTag mice; (2) measuring presynaptic terminal formation in the AgRP neurons with the injection of the AAV1-EF1a-DIO-synaptophysin-GFP in the arcuate nucleus of the hypothalamus; (3) analyzing AgRP neuronal viability and spine formations by the injection AAV9-EF1a-DIO-mCherry in the arcuate nucleus of the hypothalamus; (4) analyzing in situ the specific AgRP mitochondria in the ZsGreen-Cpt1aKO obtained by breeding ZsGreen mice with Cpt1aKO mice. Two-way ANOVA analyses were performed to determine the contributions of the effect of lack of CPT1A in AgRP neurons in the sex. RESULTS: Changes in food intake were just seen in male Cpt1aKO mice while only female Cpt1aKO mice increased energy expenditure. The lack of Cpt1a in the AgRP neurons enhanced brown adipose tissue activity, mainly in females, and induced a substantial reduction in fat deposits and body weight. Strikingly, both male and female Cpt1aKO mice showed polydipsia and polyuria, with more reduced serum vasopressin levels in females and without osmolality alterations, indicating a direct involvement of Cpt1a in AgRP neurons in fluid balance. AgRP neurons from Cpt1aKO mice showed a sex-dependent gene expression pattern, reduced mitochondria and decreased presynaptic innervation to the paraventricular nucleus, without neuronal viability alterations. CONCLUSIONS: Our results highlight that fatty acid metabolism and CPT1A in AgRP neurons show marked sex differences and play a relevant role in the neuronal processes necessary for the maintenance of whole-body fluid and energy balance.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Neuronas , Sed , Animales , Femenino , Masculino , Ratones , Proteína Relacionada con Agouti/genética , Peso Corporal , Ácidos Grasos/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Ingestión de Alimentos , Factores Sexuales
4.
Gut ; 71(1): 68-76, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526437

RESUMEN

OBJECTIVES: Coeliac disease (CD) is a complex autoimmune disorder that develops in genetically susceptible individuals. Dietary gluten triggers an immune response for which the only available treatment so far is a strict, lifelong gluten free diet. Human leucocyte antigen (HLA) genes and several non-HLA regions have been associated with the genetic susceptibility to CD, but their role in the pathogenesis of the disease is still essentially unknown, making it complicated to develop much needed non-dietary treatments. Here, we describe the functional involvement of a CD-associated single-nucleotide polymorphism (SNP) located in the 5'UTR of XPO1 in the inflammatory environment characteristic of the coeliac intestinal epithelium. DESIGN: The function of the CD-associated SNP was investigated using an intestinal cell line heterozygous for the SNP, N6-methyladenosine (m6A)-related knock-out and HLA-DQ2 mice, and human samples from patients with CD. RESULTS: Individuals harbouring the risk allele had higher m6A methylation in the 5'UTR of XPO1 RNA, rendering greater XPO1 protein amounts that led to downstream nuclear factor kappa B (NFkB) activity and subsequent inflammation. Furthermore, gluten exposure increased overall m6A methylation in humans as well as in in vitro and in vivo models. CONCLUSION: We identify a novel m6A-XPO1-NFkB pathway that is activated in CD patients. The findings will prompt the development of new therapeutic approaches directed at m6A proteins and XPO1, a target under evaluation for the treatment of intestinal disorders.


Asunto(s)
Enfermedad Celíaca/genética , Carioferinas/genética , Polimorfismo de Nucleótido Simple , ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Adenosina/análogos & derivados , Adenosina/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/patología , Antígenos HLA-DQ/genética , Humanos , Mucosa Intestinal/patología , Metilación , Ratones Noqueados , FN-kappa B/metabolismo , Proteína Exportina 1
5.
Cells ; 10(7)2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209378

RESUMEN

Phagocytosis is an inherent function of tissue macrophages for the removal of apoptotic cells and cellular debris during acute and chronic injury; however, the dynamics of this event during fibrosis development is unknown. We aim to prove that during the development of kidney fibrosis in the unilateral ureteral obstruction (UUO) model, there are some populations of macrophage with a reduced ability to phagocytose, and whether the infusion of a population of phagocytic macrophages could reduce fibrosis in the murine model UUO. For this purpose, we have identified the macrophage populations during the development of fibrosis and have characterized their phagocytic ability and their expression of CPT1a. Furthermore, we have evaluated the therapeutic effect of macrophages overexpressing CPT1a with high phagocytic skills. We evidenced that the macrophage population which exhibits high phagocytic ability (F4/80low-CD11b) in fibrotic animals decreases during the progression of fibrosis while the macrophage population with lower phagocytic ability (F4/80high-CD11b) in fibrotic conditions, conversely, increases and CPT1a macrophage cell therapy with a strengthening phagocytic ability is associated with a therapeutic effect on kidney fibrosis. We have developed a therapeutic approach to reduce fibrosis in the UUO model by enrichment of the kidney resident macrophage population with a higher proportion of exogenous phagocytic macrophages overexpressing CPT1a.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Riñón/patología , Macrófagos/trasplante , Fagocitosis , Obstrucción Ureteral/complicaciones , Animales , Antígeno CD11b/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Tratamiento Basado en Trasplante de Células y Tejidos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrosis , Perfilación de la Expresión Génica , Masculino , Ratones , Células RAW 264.7
6.
Biochem Pharmacol ; 190: 114640, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34087244

RESUMEN

Physical inactivity is a major public health problem that contributes to the development of several pathologies such as obesity, type 2 diabetes and cardiovascular diseases. Regular exercise mitigates the progression of these metabolic problems and contributes positively to memory and behavior. Therefore, public health agencies have incorporated exercise in the treatment of widespread disorders. The hypothalamus, specifically the ventromedial and the arcuate nuclei, responds to exercise activity and modulates energy metabolism through stimulation of the sympathetic nervous system and catecholamine secretion into the circulation. In addition, physical performance enhances cognitive functions and memory, mediated mostly by an increase in brain-derived neurotrophic factor levels in brain. During exercise training, skeletal muscle myofibers remodel their biochemical, morphological and physiological state. Moreover, skeletal muscle interacts with other organs by the release into the circulation of myokines, molecules that exhibit autocrine, paracrine and endocrine functions. Several studies have focused on the role of skeletal muscle and tissues in response to physical activity. However, how the hypothalamus could influence the skeletal muscle task in the context of exercise is less studied. Here, we review recent data about hypothalamus-skeletal muscle crosstalk in response to physical activity and focus on specific aspects such as the neuroendocrinological effects of exercise and the endocrine functions of skeletal muscle, to provide a perspective for future study directions.


Asunto(s)
Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Hipotálamo/fisiología , Músculo Esquelético/fisiología , Humanos , Transducción de Señal
7.
Int J Neuropsychopharmacol ; 24(1): 77-88, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-32951039

RESUMEN

BACKGROUND: Prenatal alcohol exposure is a leading cause of neurobehavioral and neurocognitive deficits collectively known as fetal alcohol spectrum disorders, including eating disorders and increased risk for substance abuse as very common issues. In this context, the present study aimed to assess the interaction between prenatal and lactation alcohol exposure (PLAE) and a high-fat diet (HFD) during childhood and adolescence. METHODS: Pregnant C57BL/6 mice underwent a procedure for alcohol binge drinking during gestation and lactation periods. Subsequently, PLAE female offspring were fed with an HFD for 8 weeks, and thereafter, nutrition-related parameters as well as their response to cocaine were assessed. RESULTS: In our model, feeding young females with an HFD increased their triglyceride blood levels but did not induce overweight compared with those fed with a standard diet. Moreover, PLAE affected how females responded to the fatty diet as they consumed less food than water-exposed offspring, consistent with a lower gain of body weight. HFD increased the psychostimulant effects of cocaine. Surprisingly, PLAE reduced the locomotor responses to cocaine without modifying cocaine-induced reward. Moreover, PLAE prevented the striatal overexpression of cannabinoid 1 receptors induced by an HFD and induced an alteration of myelin damage biomarker in the prefrontal cortex, an effect that was mitigated by an HFD-based feeding. CONCLUSION: Therefore, in female offspring, some effects triggered by one of these factors, PLAE or an HFD, were blunted by the other, suggesting a close interaction between the involved mechanisms.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/complicaciones , Cocaína/farmacología , Dieta Alta en Grasa/efectos adversos , Inhibidores de Captación de Dopamina/farmacología , Lactancia , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Factores de Edad , Animales , Animales Lactantes , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Embarazo
8.
Mol Metab ; 42: 101097, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33049408

RESUMEN

OBJECTIVE: Metainflammation is a chronic low-grade inflammatory state induced by obesity and associated comorbidities, including peripheral insulin resistance. Brown adipose tissue (BAT), a therapeutic target against obesity, is an insulin target tissue sensitive to inflammation. Therefore, it is necessary to find strategies to protect BAT against the effects of inflammation in energy balance. In this study, we explored the impact of moderate sirtuin 1 (SIRT1) overexpression on insulin sensitivity and ß-adrenergic responses in BAT and brown adipocytes (BA) under pro-inflammatory conditions. METHODS: The effect of inflammation on BAT functionality was studied in obese db/db mice and lean wild-type (WT) mice or mice with moderate overexpression of SIRT1 (SIRT1Tg+) injected with a low dose of bacterial lipopolysaccharide (LPS) to mimic endotoxemia. We also conducted studies on differentiated BA (BA-WT and BA-SIRT1Tg+) exposed to a macrophage-derived pro-inflammatory conditioned medium (CM) to evaluate the protection of SIRT1 overexpression in insulin signaling and glucose uptake, mitochondrial respiration, fatty acid oxidation (FAO), and norepinephrine (NE)-mediated-modulation of uncoupling protein-1 (UCP-1) expression. RESULTS: BAT from the db/db mice was susceptible to metabolic inflammation manifested by the activation of pro-inflammatory signaling cascades, increased pro-inflammatory gene expression, tissue-specific insulin resistance, and reduced UCP-1 expression. Impairment of insulin and noradrenergic responses were also found in the lean WT mice upon LPS injection. In contrast, BAT from the mice with moderate overexpression of SIRT1 (SIRT1Tg+) was protected against LPS-induced activation of pro-inflammatory signaling, insulin resistance, and defective thermogenic-related responses upon cold exposure. Importantly, the decline in triiodothyronine (T3) levels in the circulation and intra-BAT after exposure of the WT mice to LPS and cold was markedly attenuated in the SIRT1Tg+ mice. In vitro BA experiments in the two genotypes revealed that upon differentiation with a T3-enriched medium and subsequent exposure to a macrophage-derived pro-inflammatory CM, only BA-SIRT1Tg+ fully recovered insulin and noradrenergic responses. CONCLUSIONS: This study has ascertained the benefit of the moderate overexpression of SIRT1 to confer protection against defective insulin and ß-adrenergic responses caused by BAT inflammation. Our results have potential therapeutic value in combinatorial therapies for BAT-specific thyromimetics and SIRT1 activators to combat metainflammation in this tissue.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Sirtuina 1/metabolismo , Adipocitos/metabolismo , Adipocitos/fisiología , Adipocitos Marrones/metabolismo , Adipocitos Marrones/fisiología , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/fisiología , Animales , Metabolismo Energético , Femenino , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Inflamación/prevención & control , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Obesidad/metabolismo , Receptores Adrenérgicos beta/metabolismo , Sirtuina 1/genética , Sirtuina 1/fisiología , Termogénesis/efectos de los fármacos , Proteína Desacopladora 1/metabolismo
9.
FASEB J ; 34(9): 11816-11837, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32666604

RESUMEN

The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased drastically due to the global obesity pandemic but at present there are no approved therapies. Here, we aimed to revert high-fat diet (HFD)-induced obesity and NAFLD in mice by enhancing liver fatty acid oxidation (FAO). Moreover, we searched for potential new lipid biomarkers for monitoring liver steatosis in humans. We used adeno-associated virus (AAV) to deliver a permanently active mutant form of human carnitine palmitoyltransferase 1A (hCPT1AM), the key enzyme in FAO, in the liver of a mouse model of HFD-induced obesity and NAFLD. Expression of hCPT1AM enhanced hepatic FAO and autophagy, reduced liver steatosis, and improved glucose homeostasis. Lipidomic analysis in mice and humans before and after therapeutic interventions, such as hepatic AAV9-hCPT1AM administration and RYGB surgery, respectively, led to the identification of specific triacylglyceride (TAG) specie (C50:1) as a potential biomarker to monitor NAFFLD disease. To sum up, here we show for the first time that liver hCPT1AM gene therapy in a mouse model of established obesity, diabetes, and NAFLD can reduce HFD-induced derangements. Moreover, our study highlights TAG (C50:1) as a potential noninvasive biomarker that might be useful to monitor NAFLD in mice and humans.


Asunto(s)
Biomarcadores/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Terapia Genética/métodos , Metabolismo de los Lípidos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Animales , Carnitina O-Palmitoiltransferasa/genética , Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Humanos , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/etiología , Obesidad/metabolismo , Oxidación-Reducción , Triglicéridos/metabolismo
10.
Biochem Pharmacol ; 177: 113973, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32283053

RESUMEN

The epidemic of obesity has become pandemic, putting a significant burden on the world's healthcare system. While the heritability of the disease is high, all the identified genetic variants associated to obesity account for a very small percentage of phenotypic variation. The origins of the obesity pandemic cannot be explained exclusively due to genetic factors. In recent years, epigenetic studies have offered valuable information for a deeper understanding of the steep increase in global obesity rates. Existing evidence indicate that environmental exposures induce alterations to the epigenome, leading to the transmission of obesity risk across generations. In this review, we provide insight into the epigenetic disturbances associated with obesity and discuss the impact of harmful diets, particularly calorie-dense foods, in the epigenetic regulation of obesity. The epigenetics of obesity is an expanding area of research, and current reports suggest potential in the use of epigenetic mechanisms as clinical biomarkers and therapeutic candidates.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Predisposición Genética a la Enfermedad/genética , Obesidad/genética , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/genética , Dieta , Humanos , Leptina/genética , Obesidad/complicaciones , Proopiomelanocortina/genética , Receptor de Melanocortina Tipo 4/genética
11.
J Clin Invest ; 130(6): 2888-2902, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32078586

RESUMEN

Given the numerous health benefits of exercise, understanding how exercise capacity is regulated is a question of paramount importance. Circulating interleukin 6 (IL-6) levels surge during exercise and IL-6 favors exercise capacity. However, neither the cellular origin of circulating IL-6 during exercise nor the means by which this cytokine enhances exercise capacity has been formally established yet. Here we show through genetic means that the majority of circulating IL-6 detectable during exercise originates from muscle and that to increase exercise capacity, IL-6 must signal in osteoblasts to favor osteoclast differentiation and the release of bioactive osteocalcin in the general circulation. This explains why mice lacking the IL-6 receptor only in osteoblasts exhibit a deficit in exercise capacity of similar severity to the one seen in mice lacking muscle-derived IL-6 (mIL-6), and why this deficit is correctable by osteocalcin but not by IL-6. Furthermore, in agreement with the notion that IL-6 acts through osteocalcin, we demonstrate that mIL-6 promotes nutrient uptake and catabolism into myofibers during exercise in an osteocalcin-dependent manner. Finally, we show that the crosstalk between osteocalcin and IL-6 is conserved between rodents and humans. This study provides evidence that a muscle-bone-muscle endocrine axis is necessary to increase muscle function during exercise in rodents and humans.


Asunto(s)
Interleucina-6/inmunología , Músculo Esquelético/inmunología , Osteoblastos/inmunología , Transducción de Señal/inmunología , Animales , Femenino , Interleucina-6/genética , Macaca mulatta , Ratones , Ratones Noqueados , Transducción de Señal/genética
12.
Cells ; 9(2)2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012991

RESUMEN

Obesity and associated metabolic diseases have become a priority area of study due to the exponential increase in their prevalence and the corresponding health and economic impact. In the last decade, brown adipose tissue has become an attractive target to treat obesity. However, environmental variables such as temperature and the dynamics of energy expenditure could influence brown adipose tissue activity. Currently, most metabolic studies are carried out at a room temperature of 21 °C, which is considered a thermoneutral zone for adult humans. However, in mice this chronic cold temperature triggers an increase in their adaptive thermogenesis. In this review, we aim to cover important aspects related to the adaptation of animals to room temperature, the influence of housing and temperature on the development of metabolic phenotypes in experimental mice and their translation to human physiology. Mice studies performed in chronic cold or thermoneutral conditions allow us to better understand underlying physiological mechanisms for successful, reproducible translation into humans in the fight against obesity and metabolic diseases.


Asunto(s)
Obesidad/fisiopatología , Obesidad/terapia , Termogénesis/fisiología , Tejido Adiposo Pardo/patología , Tejido Adiposo Pardo/fisiopatología , Animales , Temperatura Corporal , Modelos Animales de Enfermedad , Ratones , Neuronas/fisiología
13.
Biochem Pharmacol ; 155: 346-355, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30030977

RESUMEN

Brown adipose tissue (BAT) is raising high expectations as a potential target in the fight against metabolic disorders such as obesity and type 2 diabetes. BAT utilizes fuels such as fatty acids to maintain body temperature by uncoupling mitochondrial electron transport to produce heat instead of ATP. This process is called thermogenesis. BAT was considered to be exclusive to rodents and human neonates. However, in the last decade several studies have demonstrated that BAT is not only present but also active in adult humans and that its activity is reduced in several pathological conditions, such as aging, obesity, and diabetes. Thus, tremendous efforts are being made by the scientific community to enhance either BAT mass or activity. Several activators of thermogenesis have been described, such as natriuretic peptides, bone morphogenic proteins, or fibroblast growth factor 21. Furthermore, recent studies have tested a therapeutic approach to directly increase BAT mass by the implantation of either adipocytes or fat tissue. This approach might have an important future in regenerative medicine and in the fight against metabolic disorders. Here, we review the emerging field of BAT transplantation including the various sources of mesenchymal stem cell isolation in rodents and humans and the described metabolic outcomes of adipocyte cell transplantation and BAT transplantation in obesity.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/trasplante , Obesidad/metabolismo , Obesidad/terapia , Termogénesis/fisiología , Trasplante de Tejidos/métodos , Animales , Humanos , Trasplante de Tejidos/tendencias
14.
Biochem Pharmacol ; 155: 224-232, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30012460

RESUMEN

The current obesity epidemic is a major worldwide health and economic burden. In the modern environment, an increase in the intake of high-fat and high-sugar foods plays a crucial role in the development of obesity by disrupting the mechanisms governing food intake and energy balance. Food intake and whole-body energy balance are regulated by the central nervous system through a sophisticated neuronal network located mostly in the hypothalamus. In particular, the hypothalamic arcuate nucleus (ARC) is a fundamental center that senses hormonal and nutrient-related signals informing about the energy state of the organism. The ARC contains two small, defined populations of neurons with opposite functions: anorexigenic proopiomelanocortin (POMC)-expressing neurons and orexigenic Agouti-related protein (AgRP)-expressing neurons. AgRP neurons, which also co-produce neuropeptide Y (NPY) and γ-Aminobutyric acid (GABA), are involved in an increase in hunger and a decrease in energy expenditure. In this review, we summarize the key findings from the most common animal models targeting AgRP neurons and the tools used to discern the role of this specific neuronal population in the control of peripheral metabolism, appetite, feeding-related behavior, and other complex behaviors. We also discuss how knowledge gained from these studies has revealed new pathways and key proteins that could be potential therapeutic targets to reduce appetite and food addictions in obesity and other diseases.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Metabolismo Energético/fisiología , Modelos Animales , Neuronas/metabolismo , Proteína Relacionada con Agouti/antagonistas & inhibidores , Animales , Fármacos Antiobesidad/administración & dosificación , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/tendencias , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Metabolismo Energético/efectos de los fármacos , Humanos , Neuronas/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
15.
Bone ; 115: 43-49, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-28428077

RESUMEN

Exercise is an evolutionary conserved survival function that nowadays has beneficial health effects. The increased metabolic activity of contracting skeletal muscle affects the biology of many organs involved in regulating muscle functions. The discovery of hormones and cytokines secreted by bone and skeletal muscle during exercise, has recently added experimental credence to the notion that a crosstalk exists between these organs. Bone through the hormone osteocalcin, promotes exercise capacity in the mouse. After binding to a G-coupled protein receptor, Gprc6a, osteocalcin increases nutrients uptake and catabolism in myofibers during exercise. The catabolic aspect of osteocalcin distinguishes it from insulin signaling. In addition, osteocalcin regulates the endocrine function of skeletal muscle because it enhances the expression of interleukin-6 (IL-6). IL-6 is produced and secreted by contracting skeletal muscle and exerts autocrine, paracrine and systemic effects. One of the systemic functions of IL-6 is to drive the generation of bioactive osteocalcin. Altogether, these studies have revealed a feed-forward loop between bone and skeletal muscle that are necessary and sufficient for optimum exercise capacity. This endocrine regulation of exercise biology, suggest novel and adapted strategies for the prevention or treatment of age related muscle loss.


Asunto(s)
Huesos/metabolismo , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Receptor Cross-Talk/fisiología , Animales , Humanos , Interleucina-6/metabolismo , Osteocalcina/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-28778968

RESUMEN

Like many other organs, bone can act as an endocrine organ through the secretion of bone-specific hormones or "osteokines." At least two osteokines are implicated in the control of glucose and energy metabolism: osteocalcin (OCN) and lipocalin-2 (LCN2). OCN stimulates the production and secretion of insulin by the pancreatic ß-cells, but also favors adaptation to exercise by stimulating glucose and fatty acid (FA) utilization by the muscle. Both of these OCN functions are mediated by the G-protein-coupled receptor GPRC6A. In contrast, LCN2 influences energy metabolism by activating appetite-suppressing signaling in the brain. This action of LCN2 occurs through its binding to the melanocortin 4 receptor (MC4R) in the paraventricular nucleus of the hypothalamus (PVN) and ventromedial neurons of the hypothalamus.


Asunto(s)
Metabolismo Energético , Glucosa/fisiología , Insulina/fisiología , Lipocalina 2/fisiología , Osteocalcina/fisiología , Animales , Huesos/fisiología , Ejercicio Físico , Humanos , Receptor de Melanocortina Tipo 4/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
18.
J Exp Med ; 214(10): 2859-2873, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28851741

RESUMEN

That osteocalcin (OCN) is necessary for hippocampal-dependent memory and to prevent anxiety-like behaviors raises novel questions. One question is to determine whether OCN is also sufficient to improve these behaviors in wild-type mice, when circulating levels of OCN decline as they do with age. Here we show that the presence of OCN is necessary for the beneficial influence of plasma from young mice when injected into older mice on memory and that peripheral delivery of OCN is sufficient to improve memory and decrease anxiety-like behaviors in 16-mo-old mice. A second question is to identify a receptor transducing OCN signal in neurons. Genetic, electrophysiological, molecular, and behavioral assays identify Gpr158, an orphan G protein-coupled receptor expressed in neurons of the CA3 region of the hippocampus, as transducing OCN's regulation of hippocampal-dependent memory in part through inositol 1,4,5-trisphosphate and brain-derived neurotrophic factor. These results indicate that exogenous OCN can improve hippocampal-dependent memory in mice and identify molecular tools to harness this pathway for therapeutic purposes.


Asunto(s)
Cognición/fisiología , Osteocalcina/fisiología , Receptores Acoplados a Proteínas G/fisiología , Envejecimiento/fisiología , Animales , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/fisiología , Cognición/efectos de los fármacos , Electrofisiología , Femenino , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteocalcina/farmacología
19.
J Clin Invest ; 127(7): 2612-2625, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28581440

RESUMEN

Cleidocranial dysplasia (CCD) is an autosomal dominant human disorder characterized by abnormal bone development that is mainly due to defective intramembranous bone formation by osteoblasts. Here, we describe a mouse strain lacking the E3 ubiquitin ligase RNF146 that shows phenotypic similarities to CCD. Loss of RNF146 stabilized its substrate AXIN1, leading to impairment of WNT3a-induced ß-catenin activation and reduced Fgf18 expression in osteoblasts. We show that FGF18 induces transcriptional coactivator with PDZ-binding motif (TAZ) expression, which is required for osteoblast proliferation and differentiation through transcriptional enhancer associate domain (TEAD) and runt-related transcription factor 2 (RUNX2) transcription factors, respectively. Finally, we demonstrate that adipogenesis is enhanced in Rnf146-/- mouse embryonic fibroblasts. Moreover, mice with loss of RNF146 within the osteoblast lineage had increased fat stores and were glucose intolerant with severe osteopenia because of defective osteoblastogenesis and subsequent impaired osteocalcin production. These findings indicate that RNF146 is required to coordinate ß-catenin signaling within the osteoblast lineage during embryonic and postnatal bone development.


Asunto(s)
Desarrollo Óseo , Displasia Cleidocraneal/metabolismo , Metabolismo Energético , Osteoblastos/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteína Axina/biosíntesis , Proteína Axina/genética , Displasia Cleidocraneal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/biosíntesis , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Humanos , Ratones , Ratones Noqueados , Osteocalcina/biosíntesis , Osteocalcina/genética , Ubiquitina-Proteína Ligasas/genética , beta Catenina/genética , beta Catenina/metabolismo
20.
Eur J Med Chem ; 131: 207-221, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28324785

RESUMEN

C75 is a synthetic anticancer drug that inhibits fatty acid synthase (FAS) and shows a potent anorexigenic side effect. In order to find new cytotoxic compounds that do not impact food intake, we synthesized a new family of C75 derivatives. The most promising anticancer compound among them was UB006 ((4SR,5SR)-4-(hydroxymethyl)-3-methylene-5-octyldihydrofuran-2(3H)-one). The effects of this compound on cytotoxicity, food intake and body weight were studied in UB006 racemic mixture and in both its enantiomers separately. The results showed that both enantiomers inhibit FAS activity and have potent cytotoxic effects in several tumour cell lines, such as the ovarian cell cancer line OVCAR-3. The (-)-UB006 enantiomer's cytotoxic effect on OVCAR-3 was 40-fold higher than that of racemic C75, and 2- and 38-fold higher than that of the racemic mixture and its opposite enantiomer, respectively. This cytotoxic effect on the OVCAR-3 cell line involves mechanisms that reduce mitochondrial respiratory capacity and ATP production, DDIT4/REDD1 upregulation, mTOR activity inhibition, and caspase-3 activation, resulting in apoptosis. In addition, central and peripheral administration of (+)-UB006 or (-)-UB006 into rats and mice did not affect food intake or body weight. Altogether, our data support the discovery of a new potential anticancer compound (-)-UB006 that has no anorexigenic side effects.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Furanos/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ingestión de Alimentos/efectos de los fármacos , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Ácido Graso Sintasas/metabolismo , Furanos/química , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...