Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Cancer ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687639

RESUMEN

Langerhans cell histiocytosis (LCH) is a myeloid neoplastic disorder characterized by lesions with CD1a-positive/Langerin (CD207)-positive histiocytes and inflammatory infiltrate that can cause local tissue damage and systemic inflammation. Clinical presentations range from single lesions with minimal impact to life-threatening disseminated disease. Therapy for systemic LCH has been established through serial trials empirically testing different chemotherapy agents and durations of therapy. However, fewer than 50% of patients who have disseminated disease are cured with the current standard-of-care vinblastine/prednisone/(mercaptopurine), and treatment failure is associated with long-term morbidity, including the risk of LCH-associated neurodegeneration. Historically, the nature of LCH-whether a reactive condition versus a neoplastic/malignant condition-was uncertain. Over the past 15 years, seminal discoveries have broadly defined LCH pathogenesis; specifically, activating mitogen-activated protein kinase pathway mutations (most frequently, BRAFV600E) in myeloid precursors drive lesion formation. LCH therefore is a clonal neoplastic disorder, although secondary inflammatory features contribute to the disease. These paradigm-changing insights offer a promise of rational cures for patients based on individual mutations, clonal reservoirs, and extent of disease. However, the pace of clinical trial development behind lags the kinetics of translational discovery. In this review, the authors discuss the current understanding of LCH biology, clinical characteristics, therapeutic strategies, and opportunities to improve outcomes for every patient through coordinated agent prioritization and clinical trial efforts.

2.
Clin Cancer Res ; 30(10): 2097-2110, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38457288

RESUMEN

PURPOSE: Clinical implications of neoadjuvant immunotherapy in patients with locally advanced but resectable head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. PATIENTS AND METHODS: Patients with resectable HNSCC were randomized to receive a single dose of preoperative durvalumab (D) with or without tremelimumab (T) before resection, followed by postoperative (chemo)radiotherapy based on multidisciplinary discretion and 1-year D treatment. Artificial intelligence (AI)-powered spatial distribution analysis of tumor-infiltrating lymphocytes and high-dimensional profiling of circulating immune cells tracked dynamic intratumoral and systemic immune responses. RESULTS: Of the 48 patients enrolled (D, 24 patients; D+T, 24 patients), 45 underwent surgical resection per protocol (D, 21 patients; D+T, 24 patients). D±T had a favorable safety profile and did not delay surgery. Distant recurrence-free survival (DRFS) was significantly better in patients treated with D+T than in those treated with D monotherapy. AI-powered whole-slide image analysis demonstrated that D+T significantly reshaped the tumor microenvironment toward immune-inflamed phenotypes, in contrast with the D monotherapy or cytotoxic chemotherapy. High-dimensional profiling of circulating immune cells revealed a significant expansion of T-cell subsets characterized by proliferation and activation in response to D+T therapy, which was rare following D monotherapy. Importantly, expansion of specific clusters in CD8+ T cells and non-regulatory CD4+ T cells with activation and exhaustion programs was associated with prolonged DRFS in patients treated with D+T. CONCLUSIONS: Preoperative D±T is feasible and may benefit patients with resectable HNSCC. Distinct changes in the tumor microenvironment and circulating immune cells were induced by each treatment regimen, warranting further investigation.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Anticuerpos Monoclonales , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de Cabeza y Cuello , Terapia Neoadyuvante , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Masculino , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Persona de Mediana Edad , Femenino , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anciano , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/uso terapéutico , Neoplasias de Cabeza y Cuello/terapia , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Terapia Neoadyuvante/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Adulto , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos
3.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552609

RESUMEN

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Asunto(s)
Neoplasias , Humanos , Carcinogénesis , Microbiota , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Obesidad/complicaciones , Calidad de Vida
4.
Science ; 383(6685): eadi3808, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38386728

RESUMEN

Cancer risk is influenced by inherited mutations, DNA replication errors, and environmental factors. However, the influence of genetic variation in immunosurveillance on cancer risk is not well understood. Leveraging population-level data from the UK Biobank and FinnGen, we show that heterozygosity at the human leukocyte antigen (HLA)-II loci is associated with reduced lung cancer risk in smokers. Fine-mapping implicated amino acid heterozygosity in the HLA-II peptide binding groove in reduced lung cancer risk, and single-cell analyses showed that smoking drives enrichment of proinflammatory lung macrophages and HLA-II+ epithelial cells. In lung cancer, widespread loss of HLA-II heterozygosity (LOH) favored loss of alleles with larger neopeptide repertoires. Thus, our findings nominate genetic variation in immunosurveillance as a critical risk factor for lung cancer.


Asunto(s)
Predisposición Genética a la Enfermedad , Antígenos de Histocompatibilidad Clase II , Vigilancia Inmunológica , Pérdida de Heterocigocidad , Neoplasias Pulmonares , Humanos , Antígenos de Histocompatibilidad Clase II/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Macrófagos Alveolares/inmunología , Factores de Riesgo , Fumar/inmunología , Vigilancia Inmunológica/genética , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple
5.
Nature ; 626(8001): 1108-1115, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326622

RESUMEN

Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.


Asunto(s)
Trastorno Depresivo Mayor , Metaloproteinasa 8 de la Matriz , Monocitos , Estrés Psicológico , Animales , Humanos , Ratones , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/enzimología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/metabolismo , Espacio Extracelular/metabolismo , Metaloproteinasa 8 de la Matriz/sangre , Metaloproteinasa 8 de la Matriz/deficiencia , Metaloproteinasa 8 de la Matriz/genética , Metaloproteinasa 8 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Monocitos/química , Monocitos/inmunología , Monocitos/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patología , Tejido Parenquimatoso/metabolismo , Análisis de Expresión Génica de una Sola Célula , Conducta Social , Aislamiento Social , Estrés Psicológico/sangre , Estrés Psicológico/genética , Estrés Psicológico/inmunología , Estrés Psicológico/metabolismo
6.
Science ; 383(6680): eadg7942, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38236961

RESUMEN

Long Covid is a debilitating condition of unknown etiology. We performed multimodal proteomics analyses of blood serum from COVID-19 patients followed up to 12 months after confirmed severe acute respiratory syndrome coronavirus 2 infection. Analysis of >6500 proteins in 268 longitudinal samples revealed dysregulated activation of the complement system, an innate immune protection and homeostasis mechanism, in individuals experiencing Long Covid. Thus, active Long Covid was characterized by terminal complement system dysregulation and ongoing activation of the alternative and classical complement pathways, the latter associated with increased antibody titers against several herpesviruses possibly stimulating this pathway. Moreover, markers of hemolysis, tissue injury, platelet activation, and monocyte-platelet aggregates were increased in Long Covid. Machine learning confirmed complement and thromboinflammatory proteins as top biomarkers, warranting diagnostic and therapeutic interrogation of these systems.


Asunto(s)
Activación de Complemento , Proteínas del Sistema Complemento , Síndrome Post Agudo de COVID-19 , Proteoma , Tromboinflamación , Humanos , Proteínas del Sistema Complemento/análisis , Proteínas del Sistema Complemento/metabolismo , Síndrome Post Agudo de COVID-19/sangre , Síndrome Post Agudo de COVID-19/complicaciones , Síndrome Post Agudo de COVID-19/inmunología , Tromboinflamación/sangre , Tromboinflamación/inmunología , Biomarcadores/sangre , Proteómica , Masculino , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano
7.
Nature ; 625(7993): 166-174, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38057662

RESUMEN

Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.


Asunto(s)
Médula Ósea , Carcinogénesis , Interleucina-4 , Mielopoyesis , Transducción de Señal , Animales , Humanos , Ratones , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interleucina-4/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Monocitos/efectos de los fármacos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Recurrencia , Transducción de Señal/efectos de los fármacos
8.
Immunity ; 56(12): 2665-2669, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38091944

RESUMEN

Vaccines have stemmed many infectious diseases, but when SARS-CoV-2 emerged, traditional vaccine development would not have been fast enough. This year's Nobel Prize in Physiology or Medicine recognizes work that enabled the rapid development of mRNA vaccines, which halted the COVID-19 pandemic. The feat was a product of basic biological insights coupled with technological innovations, which have transformed vaccine design.


Asunto(s)
COVID-19 , Vacunas , Humanos , Vacunas de ARNm , Pandemias/prevención & control , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Vacunas/genética
9.
Immunity ; 56(12): 2790-2802.e6, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38091952

RESUMEN

Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing mitogen-activated protein kinase (MAPK)-activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some individuals with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we showed that LCH-ND was caused by myeloid cells that were clonal with peripheral LCH cells. Circulating BRAFV600E+ myeloid cells caused the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiated into senescent, inflammatory CD11a+ macrophages that accumulated in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced peripheral inflammation, brain parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent targetable mechanisms of LCH-ND.


Asunto(s)
Histiocitosis de Células de Langerhans , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Histiocitosis de Células de Langerhans/genética , Histiocitosis de Células de Langerhans/patología , Histiocitosis de Células de Langerhans/terapia , Encéfalo/metabolismo , Células Mieloides/metabolismo , Diferenciación Celular
10.
EBioMedicine ; 98: 104886, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37995467

RESUMEN

BACKGROUND: The real-world impact of bivalent vaccines for wild type (WA.1) and Omicron variant (BA.5) is largely unknown in immunocompromised patients with Multiple Myeloma (MM). We characterize the humoral and cellular immune responses in patients with MM before and after receiving the bivalent booster, including neutralizing assays to identify patterns associated with continuing vulnerability to current variants (XBB1.16, EG5) in the current post-pandemic era. METHODS: We studied the humoral and cellular immune responses before and after bivalent booster immunization in 48 MM patients. Spike binding IgG antibody levels were measured by SARS-CoV-2 spike binding ELISA and neutralization capacity was assessed by a SARS-CoV-2 multi-cycle microneutralization assays to assess inhibition of live virus. We measured spike specific T-cell function using the QuantiFERON SARS-CoV-2 (Qiagen) assay as well as flow-cytometry based T-cell. In a subset of 38 patients, high-dimensional flow cytometry was performed to identify immune cell subsets associated with lack of humoral antibodies. FINDINGS: We find that bivalent vaccination provides significant boost in protection to the omicron variant in our MM patients, in a treatment specific manner. MM patients remain vulnerable to newer variants with mutations in the spike portion. Anti-CD38 and anti-BCMA therapies affect the immune machinery needed to produce antibodies. INTERPRETATION: Our study highlights varying immune responses observed in MM patients after receiving bivalent COVID-19 vaccination. Specifically, a subgroup of MM patients undergoing anti-CD38 and anti-BCMA therapy experience impairment in immune cells such DCs, B cells, NK cells and TFH cells, leading to an inability to generate adequate humoral and cellular responses to vaccination. FUNDING: National Cancer Institute (National Institutes of Health), National Institute of Allergy and Infectious Diseases (National Institutes of Health), NCI Serological Sciences Network for COVID-19 (SeroNet) and The Icahn School of Medicine at Mount Sinai.


Asunto(s)
COVID-19 , Mieloma Múltiple , Humanos , Mieloma Múltiple/terapia , Vacunas contra la COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Inmunoglobulina G , Inmunidad , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunación
11.
bioRxiv ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37873371

RESUMEN

Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing MAPK activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some patients with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we show that LCH-ND is caused by myeloid cells that are clonal with peripheral LCH cells. We discovered that circulating BRAF V600E + myeloid cells cause the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiate into senescent, inflammatory CD11a + macrophages that accumulate in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent novel and targetable mechanisms of ND.

12.
Nat Cell Biol ; 25(9): 1332-1345, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37605008

RESUMEN

MacroH2A has established tumour suppressive functions in melanoma and other cancers, but an unappreciated role in the tumour microenvironment. Using an autochthonous, immunocompetent mouse model of melanoma, we demonstrate that mice devoid of macroH2A variants exhibit increased tumour burden compared with wild-type counterparts. MacroH2A-deficient tumours accumulate immunosuppressive monocytes and are depleted of functional cytotoxic T cells, characteristics consistent with a compromised anti-tumour response. Single cell and spatial transcriptomics identify increased dedifferentiation along the neural crest lineage of the tumour compartment and increased frequency and activation of cancer-associated fibroblasts following macroH2A loss. Mechanistically, macroH2A-deficient cancer-associated fibroblasts display increased myeloid chemoattractant activity as a consequence of hyperinducible expression of inflammatory genes, which is enforced by increased chromatin looping of their promoters to enhancers that gain H3K27ac. In summary, we reveal a tumour suppressive role for macroH2A variants through the regulation of chromatin architecture in the tumour stroma with potential implications for human melanoma.


Asunto(s)
Fibroblastos Asociados al Cáncer , Histonas , Melanoma , Animales , Ratones , Cromatina/genética , Expresión Génica , Histonas/genética , Melanoma/genética , Microambiente Tumoral/genética
13.
J Immunother Cancer ; 11(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37487664

RESUMEN

BACKGROUND: Cancer immunotherapies are generally effective in patients whose tumors contain a priori primed T-cells reactive to tumor antigens (TA). One approach to prime TA-reactive T-cells is to administer immunostimulatory molecules, cells, or pathogens directly to the tumor site, that is, in situ vaccination (ISV). We recently described an ISV using Flt3L to expand and recruit dendritic cells (DC), radiotherapy to load DC with TA, and pattern recognition receptor agonists (PRRa) to activate TA-loaded DC. While ISV trials using synthetic PRRa have yielded systemic tumor regressions, the optimal method to activate DCs is unknown. METHODS: To discover optimal DC activators and increase access to clinical grade reagents, we assessed whether viral or bacterial components found in common pathogen vaccines are an effective source of natural PRRa (naPRRa). Using deep profiling (155-metric) of naPRRa immunomodulatory effects and gene editing of specific PRR, we defined specific signatures and molecular mechanisms by which naPRRa potentiate T-cell priming. RESULTS: We observed that vaccine naPRRa can be even more potent in activating Flt3L-expanded murine and human DCs than synthetic PRRa, promoting cross-priming of TA-reactive T-cells. We developed a mechanistically diverse naPRRa combination (BCG, PedvaxHIB, Rabies) and noted more potent T-cell cross-priming than with any single naPRRa. The naPRRa triplet-as part of Flt3L-primed ISV-induced greater intratumoral CD8 T-cell infiltration, T-cells reactive to a newly defined tumorous neoantigen, durable tumor regressions. CONCLUSIONS: This work provides rationale for the translation of pathogen vaccines as FDA-approved clinical-grade DC activators which could be exploited as immune-stimulants for early phase trials.


Asunto(s)
Linfocitos T CD8-positivos , Reactividad Cruzada , Humanos , Animales , Ratones , Vacunación , Edición Génica , Inmunización
15.
Nat Immunol ; 24(5): 792-801, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081148

RESUMEN

Natural killer (NK) cells are commonly reduced in human tumors, enabling many to evade surveillance. Here, we sought to identify cues that alter NK cell activity in tumors. We found that, in human lung cancer, the presence of NK cells inversely correlated with that of monocyte-derived macrophages (mo-macs). In a murine model of lung adenocarcinoma, we show that engulfment of tumor debris by mo-macs triggers a pro-tumorigenic program governed by triggering receptor expressed on myeloid cells 2 (TREM2). Genetic deletion of Trem2 rescued NK cell accumulation and enabled an NK cell-mediated regression of lung tumors. TREM2+ mo-macs reduced NK cell activity by modulating interleukin (IL)-18/IL-18BP decoy interactions and IL-15 production. Notably, TREM2 blockade synergized with an NK cell-activating agent to further inhibit tumor growth. Altogether, our findings identify a new axis, in which TREM2+ mo-macs suppress NK cell accumulation and cytolytic activity. Dual targeting of macrophages and NK cells represents a new strategy to boost antitumor immunity.


Asunto(s)
Células Asesinas Naturales , Neoplasias Pulmonares , Humanos , Ratones , Animales , Macrófagos , Células Mieloides , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
16.
Res Sq ; 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36993735

RESUMEN

Background Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. Methods Using measurements of ~4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N= 437), we identified 413 higher plasma abundances of protein targets and 40 lower plasma abundances of protein targets associated with COVID-AKI (adjusted p <0.05). Of these, 62 proteins were validated in an external cohort (p <0.05, N =261). Results We demonstrate that COVID-AKI is associated with increased markers of tubular injury ( NGAL ) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p <0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2 , trefoil factor 3 , transmembrane emp24 domain-containing protein 10 , and cystatin-C indicating tubular dysfunction and injury. Conclusions Using clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.

17.
Mol Syst Biol ; 19(5): e11361, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36919946

RESUMEN

DNA methylation comprises a cumulative record of lifetime exposures superimposed on genetically determined markers. Little is known about methylation dynamics in humans following an acute perturbation, such as infection. We characterized the temporal trajectory of blood epigenetic remodeling in 133 participants in a prospective study of young adults before, during, and after asymptomatic and mildly symptomatic SARS-CoV-2 infection. The differential methylation caused by asymptomatic or mildly symptomatic infections was indistinguishable. While differential gene expression largely returned to baseline levels after the virus became undetectable, some differentially methylated sites persisted for months of follow-up, with a pattern resembling autoimmune or inflammatory disease. We leveraged these responses to construct methylation-based machine learning models that distinguished samples from pre-, during-, and postinfection time periods, and quantitatively predicted the time since infection. The clinical trajectory in the young adults and in a diverse cohort with more severe outcomes was predicted by the similarity of methylation before or early after SARS-CoV-2 infection to the model-defined postinfection state. Unlike the phenomenon of trained immunity, the postacute SARS-CoV-2 epigenetic landscape we identify is antiprotective.


Asunto(s)
COVID-19 , Adulto Joven , Humanos , COVID-19/genética , SARS-CoV-2/genética , Estudios Prospectivos , Metilación de ADN/genética , Procesamiento Proteico-Postraduccional
18.
Res Sq ; 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36778505

RESUMEN

Psychosocial stress has profound effects on the body, including the peripheral immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3,4,5, the underlying mechanisms are not well understood. Here we show that a peripheral myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is elevated in serum of subjects with MDD as well as in stress-susceptible (SUS) mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), thereby altering social behaviour. Using a combination of mass cytometry and single-cell RNA-sequencing, we performed high-dimensional phenotyping of immune cells in circulation and brain and demonstrate that peripheral monocytes are strongly affected by stress. Both peripheral and brain-infiltrating monocytes of SUS mice showed increased Mmp8 expression following CSDS. We further demonstrate that peripheral MMP8 directly infiltrates the NAc parenchyma to control the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a novel mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.

19.
Immunity ; 56(4): 783-796.e7, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36827982

RESUMEN

Diet profoundly influences physiology. Whereas over-nutrition elevates risk for disease via its influence on immunity and metabolism, caloric restriction and fasting appear to be salutogenic. Despite multiple correlations observed between diet and health, the underlying biology remains unclear. Here, we identified a fasting-induced switch in leukocyte migration that prolongs monocyte lifespan and alters susceptibility to disease in mice. We show that fasting during the active phase induced the rapid return of monocytes from the blood to the bone marrow. Monocyte re-entry was orchestrated by hypothalamic-pituitary-adrenal (HPA) axis-dependent release of corticosterone, which augmented the CXCR4 chemokine receptor. Although the marrow is a safe haven for monocytes during nutrient scarcity, re-feeding prompted mobilization culminating in monocytosis of chronologically older and transcriptionally distinct monocytes. These shifts altered response to infection. Our study shows that diet-in particular, a diet's temporal dynamic balance-modulates monocyte lifespan with consequences for adaptation to external stressors.


Asunto(s)
Médula Ósea , Monocitos , Ratones , Animales , Células de la Médula Ósea , Ayuno , Quimiocinas/metabolismo
20.
Nat Med ; 29(1): 59-74, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36658422

RESUMEN

Historically, cancer research and therapy have focused on malignant cells and their tumor microenvironment. However, the vascular, lymphatic and nervous systems establish long-range communication between the tumor and the host. This communication is mediated by metabolites generated by the host or the gut microbiota, as well by systemic neuroendocrine, pro-inflammatory and immune circuitries-all of which dictate the trajectory of malignant disease through molecularly defined biological mechanisms. Moreover, aging, co-morbidities and co-medications have a major impact on the development, progression and therapeutic response of patients with cancer. In this Perspective, we advocate for a whole-body 'ecological' exploration of malignant disease. We surmise that accumulating knowledge on the intricate relationship between the host and the tumor will shape rational strategies for systemic, bodywide interventions that will eventually improve tumor control, as well as quality of life, in patients with cancer.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Humanos , Calidad de Vida , Microbioma Gastrointestinal/fisiología , Neoplasias/terapia , Sistemas Neurosecretores , Envejecimiento , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...