Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496490

RESUMEN

Molecular mechanisms driving clonal aggressiveness in leukemia are not fully understood. We tracked and analyzed two mouse MLL-rearranged leukemic clones independently evolving towards higher aggressiveness. More aggressive subclones lost their growth differential ex vivo but restored it upon secondary transplantation, suggesting molecular memory of aggressiveness. Development of aggressiveness was associated with clone-specific gradual modulation of chromatin states and expression levels across the genome, with a surprising preferential trend of reversing the earlier changes between normal and leukemic progenitors. To focus on the core aggressiveness program, we identified genes with consistent changes of expression and chromatin marks that were maintained in vivo and ex vivo in both clones. Overexpressing selected core genes (Smad1 as aggressiveness driver, Irx5 and Plag1 as suppressors) affected leukemic progenitor growth in the predicted way and had convergent downstream effects on central transcription factors and repressive epigenetic modifiers, suggesting a broader regulatory network of leukemic aggressiveness.

2.
Leukemia ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424137

RESUMEN

Differentiation therapy has proven to be a success story for patients with acute promyelocytic leukemia. However, the remaining subtypes of acute myeloid leukemia (AML) are treated with cytotoxic chemotherapies that have limited efficacy and a high likelihood of resistance. As differentiation arrest is a hallmark of AML, there is increased interest in developing differentiation-inducing agents to enhance disease-free survival. Here, we provide a comprehensive review of current reports and future avenues of nucleic acid therapeutics for AML, focusing on the use of targeted nucleic acid drugs to promote differentiation. Specifically, we compare and discuss the precision of small interfering RNA, small activating RNA, antisense oligonucleotides, and aptamers to modulate gene expression patterns that drive leukemic cell differentiation. We delve into preclinical and clinical studies that demonstrate the efficacy of nucleic acid-based differentiation therapies to induce leukemic cell maturation and reduce disease burden. By directly influencing the expression of key genes involved in myeloid maturation, nucleic acid therapeutics hold the potential to induce the differentiation of leukemic cells towards a more mature and less aggressive phenotype. Furthermore, we discuss the most critical challenges associated with developing nucleic acid therapeutics for myeloid malignancies. By introducing the progress in the field and identifying future opportunities, we aim to highlight the power of nucleic acid therapeutics in reshaping the landscape of myeloid leukemia treatment.

3.
Ann Hematol ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736806

RESUMEN

Gene therapy represents a significant potential to revolutionize the field of hematology with applications in correcting genetic mutations, generating cell lines and animal models, and improving the feasibility and efficacy of cancer immunotherapy. Compared to different genetic engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated protein 9 (Cas9) emerged as an effective and versatile genetic editor with the ability to precisely modify the genome. The applications of genetic engineering in various hematological disorders have shown encouraging results. Monogenic hematological disorders can conceivably be corrected with single gene modification. Through the use of CRISPR-CAS9, restoration of functional red blood cells and hemostasis factors were successfully attained in sickle cell anemia, beta-thalassemia, and hemophilia disorders. Our understanding of hemato-oncology has been advanced via CRIPSR-CAS9 technology. CRISPR-CAS9 aided to build a platform of mutated genes responsible for cell survival and proliferation in leukemia. Therapeutic application of CRISPR-CAS9 when combined with chimeric antigen receptor (CAR) T cell therapy in multiple myeloma and acute lymphoblastic leukemia was feasible with attenuation of CAR T cell therapy pitfalls. Our review outlines the latest literature on the utilization of CRISPR-Cas9 in the treatment of beta-hemoglobinopathies and hemophilia disorders. We present the strategies that were employed and the findings of preclinical and clinical trials. Also, the review will discuss gene engineering in the field of hemato-oncology as a proper tool to facilitate and overcome the drawbacks of chimeric antigen receptor T cell therapy (CAR-T).

4.
Cell Rep ; 42(9): 113084, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37716355

RESUMEN

Pediatric acute megakaryoblastic leukemia (AMKL) is an aggressive blood cancer associated with poor therapeutic response and high mortality. Here we describe the development of CBFA2T3-GLIS2-driven mouse models of AMKL that recapitulate the phenotypic and transcriptional signatures of the human disease. We show that an activating Ras mutation that occurs in human AMKL increases the penetrance and decreases the latency of CBF2AT3-GLIS2-driven AMKL. CBFA2T3-GLIS2 and GLIS2 modulate similar transcriptional networks. We identify the dominant oncogenic properties of GLIS2 that trigger AMKL in cooperation with oncogenic Ras. We find that both CBFA2T3-GLIS2 and GLIS2 alter the expression of a number of BH3-only proteins, causing AMKL cell sensitivity to the BCL2 inhibitor navitoclax both in vitro and in vivo, suggesting a potential therapeutic option for pediatric patients suffering from CBFA2T3-GLIS2-driven AMKL.


Asunto(s)
Leucemia Megacarioblástica Aguda , Animales , Ratones , Niño , Humanos , Leucemia Megacarioblástica Aguda/tratamiento farmacológico , Leucemia Megacarioblástica Aguda/genética , Compuestos de Anilina , Sulfonamidas , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Represoras
5.
Cell Rep Med ; 4(9): 101191, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37683650

RESUMEN

Previous chemotherapy research has focused almost exclusively on apoptosis. Here, a standard frontline drug combination of cytarabine and idarubicin induces distinct features of caspase-independent, poly(ADP-ribose) polymerase 1 (PARP-1)-mediated programmed cell death "parthanatos" in acute myeloid leukemia (AML) cell lines (n = 3/10 tested), peripheral blood mononuclear cells from healthy human donors (n = 10/10 tested), and primary cell samples from patients with AML (n = 18/39 tested, French-American-British subtypes M4 and M5). A 3-fold improvement in survival rates is observed in the parthanatos-positive versus -negative patient groups (hazard ratio [HR] = 0.28-0.37, p = 0.002-0.046). Manipulation of PARP-1 activity in parthanatos-competent cells reveals higher drug sensitivity in cells that have basal PARP-1 levels as compared with those subjected to PARP-1 overexpression or suppression. The same trends are observed in RNA expression databases and support the conclusion that PARP-1 can have optimal levels for favorable chemotherapeutic responses.


Asunto(s)
Leucemia , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Apoptosis , Línea Celular , Leucocitos Mononucleares , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
6.
Exp Hematol ; 121: 6-11, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36764598

RESUMEN

Immunologic memory is a feature typically ascribed to the adaptive arm of the immune system. However, recent studies have demonstrated that hematopoietic stem cells (HSCs) and innate immune cells such as monocytes and macrophages can gain epigenetic signatures to enhance their response in the context of reinfection. This suggests the presence of long-term memory, a phenomenon referred to as trained immunity. Trained immunity in HSCs can occur via changes in the epigenetic landscape and enhanced chromatin accessibility in lineage-specific genes, as well as through metabolic alterations. These changes can lead to a skewing in lineage bias, particularly enhanced myelopoiesis and the generation of epigenetically modified innate immune cells that provide better protection against pathogens on secondary infection. Here, we summarize recent advancements in trained immunity and epigenetic memory formation in HSCs and self-renewing alveolar macrophages, which was the focus of the Spring 2022 International Society for Experimental Hematology (ISEH) webinar.


Asunto(s)
Inmunidad Innata , Inmunidad Entrenada , Inmunidad Innata/genética , Memoria Epigenética , Macrófagos , Memoria Inmunológica/genética
7.
J Exp Clin Cancer Res ; 41(1): 340, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36482393

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is an aggressive hematological cancer resulting from uncontrolled proliferation of differentiation-blocked myeloid cells. Seventy percent of AML patients are currently not cured with available treatments, highlighting the need of novel therapeutic strategies. A promising target in AML is the mammalian target of rapamycin complex 1 (mTORC1). Clinical inhibition of mTORC1 is limited by its reactivation through compensatory and regulatory feedback loops. Here, we explored a strategy to curtail these drawbacks through inhibition of an important effector of the mTORC1signaling pathway, the eukaryotic initiation factor 4A (eIF4A). METHODS: We tested the anti-leukemic effect of a potent and specific eIF4A inhibitor (eIF4Ai), CR-1-31-B, in combination with cytosine arabinoside (araC) or the BCL2 inhibitor venetoclax. We utilized the MOLM-14 human AML cell line to model chemoresistant disease both in vitro and in vivo. In eIF4Ai-treated cells, we assessed for changes in survival, apoptotic priming, de novo protein synthesis, targeted intracellular metabolite content, bioenergetic profile, mitochondrial reactive oxygen species (mtROS) and mitochondrial membrane potential (MMP). RESULTS: eIF4Ai exhibits anti-leukemia activity in vivo while sparing non-malignant myeloid cells. In vitro, eIF4Ai synergizes with two therapeutic agents in AML, araC and venetoclax. EIF4Ai reduces mitochondrial membrane potential (MMP) and the rate of ATP synthesis from mitochondrial respiration and glycolysis. Furthermore, eIF4i enhanced apoptotic priming while reducing the expression levels of the antiapoptotic factors BCL2, BCL-XL and MCL1. Concomitantly, eIF4Ai decreases intracellular levels of specific metabolic intermediates of the tricarboxylic acid cycle (TCA cycle) and glucose metabolism, while enhancing mtROS. In vitro redox stress contributes to eIF4Ai cytotoxicity, as treatment with a ROS scavenger partially rescued the viability of eIF4A inhibition. CONCLUSIONS: We discovered that chemoresistant MOLM-14 cells rely on eIF4A-dependent cap translation for survival in vitro and in vivo. EIF4A drives an intrinsic metabolic program sustaining bioenergetic and redox homeostasis and regulates the expression of anti-apoptotic proteins. Overall, our work suggests that eIF4A-dependent cap translation contributes to adaptive processes involved in resistance to relevant therapeutic agents in AML.


Asunto(s)
Antineoplásicos , Citarabina , Factor 4A Eucariótico de Iniciación , Leucemia Mieloide Aguda , Humanos , Citarabina/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2 , Línea Celular Tumoral , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Antineoplásicos/farmacología
8.
Front Pharmacol ; 13: 852143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795568

RESUMEN

Multi-omic approaches offer an unprecedented overview of the development, plasticity, and resistance of cancer. However, the translation from anti-cancer compounds identified in vitro to clinically active drugs have a notoriously low success rate. Here, we review how technical advances in cell culture, robotics, computational biology, and development of reporter systems have transformed drug discovery, enabling screening approaches tailored to clinically relevant functional readouts (e.g., bypassing drug resistance). Illustrating with selected examples of "success stories," we describe the process of phenotype-based high-throughput drug screening to target malignant cells or the immune system. Second, we describe computational approaches that link transcriptomic profiling of cancers with existing pharmaceutical compounds to accelerate drug repurposing. Finally, we review how CRISPR-based screening can be applied for the discovery of mechanisms of drug resistance and sensitization. Overall, we explore how the complementary strengths of each of these approaches allow them to transform the paradigm of pre-clinical drug development.

9.
Blood Adv ; 6(17): 5072-5084, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35793392

RESUMEN

Genome-wide CRISPR screens have been extremely useful in identifying therapeutic targets in diverse cancers by defining genes that are essential for malignant growth. However, most CRISPR screens were performed in vitro and thus cannot identify genes that are essential for interactions with the microenvironment in vivo. Here, we report genome-wide CRISPR screens in 2 in vivo murine models of acute myeloid leukemia (AML) driven by the KMT2A/MLLT3 fusion or by the constitutive coexpression of Hoxa9 and Meis1. Secondary validation using a focused library identified 72 genes specifically essential for leukemic growth in vivo, including components of the major histocompatibility complex class I complex, Cd47, complement receptor Cr1l, and the ß-4-galactosylation pathway. Importantly, several of these in vivo-specific hits have a prognostic effect or are inferred to be master regulators of protein activity in human AML cases. For instance, we identified Fermt3, a master regulator of integrin signaling, as having in vivo-specific dependency with high prognostic relevance. Overall, we show an experimental and computational pipeline for genome-wide functional screens in vivo in AML and provide a genome-wide resource of essential drivers of leukemic growth in vivo.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Leucemia Mieloide Aguda , Animales , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Transducción de Señal , Microambiente Tumoral/genética
10.
Diagnostics (Basel) ; 12(6)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35741225

RESUMEN

Gaucher disease is a rare inherited disorder caused by a deficiency of the lysosomal acid beta-glucocerebrosidase enzyme. Metabolomic studies by our group targeted several new potential urinary biomarkers. Apart from lyso-Gb1, these studies highlighted lyso-Gb1 analogs -28, -26, -12 (A/B), +2, +14, +16 (A/B), +30, and +32 Da, and polycyclic lyso-Gb1 analogs 362, 366, 390, and 394 Da. The main objective of the current study was to develop and validate a robust UPLC-MS/MS method to study the urine distribution of these biomarkers in patients. METHOD: Urine samples were purified using solid-phase extraction. A 12 min UPLC-MS/MS method was developed. RESULTS: Validation assays revealed high precision and accuracy for creatinine and lyso-Gb1. Most lyso-Gb1 analogs had good recovery rates and high intra- and interday precision assays. Biomarker-estimated LOD and LOQ levels ranged from 56-109 pM to 186-354 pM, respectively. Comparison between GD patients and healthy controls showed significant differences in most biomarker levels. Typically, treated GD patients presented lower biomarker levels compared to untreated patients. CONCLUSIONS: These data suggest that the metabolites investigated might be interesting GD biomarkers. More studies with a larger cohort of patients will be needed to better understand the clinical significance of these GD biomarkers.

11.
Exp Hematol ; 111: 25-31, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35487293

RESUMEN

Post-transcriptional RNA modifications determine RNA fate by influencing numerous processes such as translation, decay and localization. One of the most abundant RNA modifications is N6-methyladenoside (m6A), which has been shown to be important in healthy as well as malignant hematopoiesis. Several proteins representing key players in m6A RNA biology, such as m6A writers, erasers and readers, were recently reported to be essential for hematopoietic stem cell (HSC) function. In leukemia, expression of m6A regulators has been shown to be increased, opening up potential opportunities for therapeutic exploitation by targeting them in blood malignancies. These recent discoveries were the focus of the Fall 2021 International Society for Experimental Hematology New Investigators webinar. We review here the latest findings in the field of mRNA modifications in normal and malignant hematopoiesis and how this might open up novel therapeutic options.


Asunto(s)
Hematopoyesis , Leucemia , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia/genética , ARN/metabolismo , Procesamiento Postranscripcional del ARN
12.
J Proteome Res ; 21(5): 1321-1329, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35349295

RESUMEN

Gaucher disease (GD) is a lysosomal storage disorder resulting from a biallelic mutation in the gene GBA1, leading to deficiencies in the enzyme ß-glucocerebrosidase (Gcase). Inabilities of the Gcase to catabolize its substrate result in the accumulation of sphingolipids in macrophages, which impairs the cell functions and ultimately leads to multisystemic clinical manifestations. Important variability in symptoms and manifestations may lead to challenging diagnosis and patient care. Plasma glucosylsphingosine (lyso-Gb1) is a biomarker frequently used for prognosis, monitoring, and patient follow-up. While lyso-Gb1 appears to be a valid biomarker, few studies have investigated other matrices for potential GD biomarkers. The main objective of this study was to investigate the urine matrix as a potential source of new GD biomarkers by performing a metabolomic study using time-of-flight mass spectrometry. Our study highlighted a significant increase of eight urinary lyso-Gb1 analogues. Moreover, a novel class of biomarkers, named polycyclic lyso-Gb1 analogues, was identified. These four new molecules were more elevated than lyso-Gb1 and related analogues in urine specimens of GD patients. Further investigations are warranted to validate the efficiency of these newly found biomarkers on a larger cohort of Gaucher patients and to compare them with plasma biomarkers currently quantified in clinical laboratories.


Asunto(s)
Enfermedad de Gaucher , Biomarcadores , Enfermedad de Gaucher/diagnóstico , Enfermedad de Gaucher/genética , Humanos , Espectrometría de Masas , Metabolómica , Pronóstico
13.
Bioanalysis ; 14(4): 223-240, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35118875

RESUMEN

Aim: Gaucher disease (GD) is caused by a deficiency of the lysosomal enzyme acid ß-glucocerebrosidase. Recent metabolomic studies highlighted several new metabolites increased in the plasma of GD patients. We aimed to develop and validate a UPLC-MS/MS method allowing a relative quantitation of lyso-Gb1 and lyso-Gb1 analogs -28, -12, -2, +14, +16 and +18 Da in addition to sphingosylphosphorylcholine, N-palmitoyl-O-phosphocholine to study potential correlations with clinical manifestations. Methodology & results: Following solid-phase extraction, plasma samples were evaporated and resuspended in 100 µl of resuspension solution. Three microliter is injected into the UPLC-MS/MS for analysis. Conclusion: All biomarkers studied were increased in GD patients. Significant correlations were observed between specific analogs and hematological, and visceral complications, as well as overall disease severity.


Asunto(s)
Biomarcadores/sangre , Enfermedad de Gaucher/sangre , Enfermedad de Gaucher/diagnóstico , Diagnóstico Precoz , Humanos
14.
Bioanalysis ; 14(5): 289-306, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35118880

RESUMEN

Background: Sphingolipidoses are caused by a defective sphingolipid catabolism, leading to an accumulation of several glycolipid species in tissues and resulting in neurotoxicity and severe systemic manifestations. Methods & results: Urine samples from controls and patients were purified by solid-phase extraction prior to the analysis by ultra-high-performance liquid chromatography (UPLC) combined with MS/MS. A UPLC-MS/MS method for the analysis of 21 urinary creatinine-normalized biomarkers for eight diseases was developed and validated. Conclusion: Considering the growing demand to identify patients with different sphingolipidoses early and reliably, this methodology will be applied for high-risk screening to target efficiently patients with various sphingolipidoses.


Asunto(s)
Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Humanos , Lisosomas , Esfingolípidos , Espectrometría de Masas en Tándem/métodos
15.
Blood ; 139(4): 502-522, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34610101

RESUMEN

Proton export is often considered a detoxifying process in animal cells, with monocarboxylate symporters coexporting excessive lactate and protons during glycolysis or the Warburg effect. We report a novel mechanism by which lactate/H+ export is sufficient to induce cell growth. Increased intracellular pH selectively activates catalysis by key metabolic gatekeeper enzymes HK1/PKM2/G6PDH, thereby enhancing glycolytic and pentose phosphate pathway carbon flux. The result is increased nucleotide levels, NADPH/NADP+ ratio, and cell proliferation. Simply increasing the lactate/proton symporter monocarboxylate transporter 4 (MCT4) or the sodium-proton antiporter NHE1 was sufficient to increase intracellular pH and give normal hematopoietic cells a significant competitive growth advantage in vivo. This process does not require additional cytokine triggers and is exploited in malignancy, where leukemogenic mutations epigenetically increase MCT4. Inhibiting MCT4 decreased intracellular pH and carbon flux and eliminated acute myeloid leukemia-initiating cells in mice without cytotoxic chemotherapy. Intracellular alkalization is a primitive mechanism by which proton partitioning can directly reprogram carbon metabolism for cell growth.


Asunto(s)
Carbono/metabolismo , Proliferación Celular , Ácido Láctico/metabolismo , Leucemia Mieloide Aguda/metabolismo , Animales , Transformación Celular Neoplásica/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Vía de Pentosa Fosfato , Protones , Células Tumorales Cultivadas
16.
Leuk Lymphoma ; 62(10): 2352-2359, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34020575

RESUMEN

Diagnosis and minimal residual disease (MRD) monitoring of chronic lymphocytic leukemia (CLL) by flow cytometry currently requires multiple antibody panels. We added CD23 and CD200 to the EuroFlowTM lymphoid screening tube (LST) to create a 10-color modified LST (mLST) capable of diagnosing typical CLL in a single tube. We then explored if the mLST could be used for MRD by comparing its performance to the European Research Initiative on CLL (ERIC) panel using spiked cryopreserved and fresh patient samples. Over 1 year of use in our clinical laboratory, the mLST diagnosed CLL without further immunophenotyping in 56% of samples with an abnormal clone. There was good agreement in MRD results between the mLST and ERIC panels. Therefore, the mLST can streamline CLL diagnosis by reducing technician time and the number of panels required. It may have the potential to screen for MRD in laboratories without access to dedicated panels (ERIC).


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Citometría de Flujo , Humanos , Inmunofenotipificación , Leucemia Linfocítica Crónica de Células B/diagnóstico , Tipificación de Secuencias Multilocus , Neoplasia Residual
17.
Artículo en Inglés | MEDLINE | ID: mdl-33986034

RESUMEN

Hematological malignancies are broadly divided into myeloid and lymphoid neoplasms, reflecting the two major cellular lineages of the hematopoietic system. It is generally rare for hematological malignancies to spontaneously progress with a switch from myeloid to lymphoid lineage. We describe the exceptional case of a patient who sequentially developed myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML), and B-cell acute lymphoblastic leukemia (B-ALL), as well as our investigation into the underlying pathogenesis. Using whole-exome sequencing (WES) performed on sorted CMML and B-ALL cell fractions, we identified both common and unique potential driver mutations, suggesting a branching clonal evolution giving rise to both diseases. Interestingly, we also identified a germline variant in the cancer susceptibility gene CHEK2 We validated that this variant (c.475T > C; p.Y159H), located in the forkhead-associated (FHA) domain, impairs its capacity to bind BRCA1 in cellulo. This unique case provides novel insight into the genetics of complex hematological diseases and highlights the possibility that such patients may carry inherited predispositions.


Asunto(s)
Quinasa de Punto de Control 2/genética , Células Germinativas , Leucemia Mielomonocítica Crónica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína BRCA1/genética , Neoplasias Hematológicas , Humanos , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/genética
18.
Exp Hematol ; 94: 20-25, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33278488

RESUMEN

The bone marrow microenvironment contains cellular niches that maintain the pool of hematopoietic stem and progenitor cells and support hematopoietic maturation. Malignant hematopoietic cells also co-opt normal cellular interactions to promote their own growth and evade therapy. In vivo systems used to study human hematopoiesis have been developed through transplantation into immunodeficient mouse models. However, incomplete cross-compatibility between the murine stroma and transplanted human hematopoietic cells limits the rate of engraftment and the study of relevant interactions. To supplement in vivo xenotransplantation models, complementary strategies have recently been developed, including the use of three-dimensional human bone marrow organoids in vivo, generated from bone marrow stromal cells seeded onto osteo-inductive scaffolds, as well as the use of ex vivo bioreactor models. These topics were the focus of the Spring 2020 International Society for Experimental Hematology New Investigator webinar. We review here the latest advances in generating humanized hematopoietic organoids and how they allow for the study of novel microenvironmental interactions.


Asunto(s)
Bioingeniería/métodos , Reactores Biológicos , Hematopoyesis , Células Madre Hematopoyéticas/citología , Organoides/citología , Animales , Bioingeniería/instrumentación , Médula Ósea/metabolismo , Diseño de Equipo , Células Madre Hematopoyéticas/metabolismo , Humanos , Organoides/metabolismo , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Trasplante Heterólogo/métodos
19.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114153

RESUMEN

Gaucher disease (GD) is a rare autosomal recessive multisystemic lysosomal storage disorder presenting a marked phenotypic and genotypic variability. GD is caused by a deficiency in the glucocerebrosidase enzyme. The diagnosis of GD remains challenging because of the large clinical spectrum associated with the disease. Moreover, GD biomarkers are often not sensitive enough and can be subject to polymorphic variations. The main objective of this study was to perform a metabolomic study using an ultra-performance liquid chromatography system coupled to a time-of-flight mass spectrometer to identify novel GD biomarkers. Following the analysis of plasma samples from patients with GD, and age- and gender-matched control samples, supervised statistical analyses were used to find the best molecules to differentiate the two groups. Targeted biomarkers were structurally elucidated using accurate mass measurements and tandem mass spectrometry. This metabolomic study was successful in highlighting seven biomarkers associated with GD. Fragmentation tests revealed that these latter biomarkers were lyso-Gb1 (glucosylsphingosine) and four related analogs (with the following modifications on the sphingosine moiety: -C2H4, -H2, -H2+O, and +H2O), sphingosylphosphorylcholine, and N-palmitoyl-O-phosphocholineserine. Based on the plasma biomarker distribution, we suggest the evaluation of this GD biomarker profile, which might facilitate early diagnosis, monitoring, and follow-up of patients.


Asunto(s)
Biomarcadores/sangre , Enfermedad de Gaucher/diagnóstico , Metabolómica/métodos , Fosforilcolina/análogos & derivados , Psicosina/análogos & derivados , Esfingosina/análogos & derivados , Adulto , Anciano , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión , Diagnóstico Precoz , Femenino , Enfermedad de Gaucher/sangre , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Fosforilcolina/sangre , Pronóstico , Psicosina/sangre , Sensibilidad y Especificidad , Esfingosina/sangre , Adulto Joven
20.
Oncoimmunology ; 7(10): e1475875, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30288342

RESUMEN

NKp46 (CD335) is a surface receptor shared by both human and mouse natural killer (NK) cells and innate lymphoid cells (ILCs) that transduces activating signals necessary to eliminate virus-infected cells and tumors. Here, we describe a spontaneous point mutation of cysteine to arginine (C14R) in the signal peptide of the NKp46 protein in congenic Ly5.1 mice and the newly generated NCRB6C14R strain. Ly5.1C14R NK cells expressed similar levels of Ncr1 mRNA as C57BL/6, but showed impaired surface NKp46 and reduced ability to control melanoma tumors in vivo. Expression of the mutant NKp46C14R in 293T cells showed that NKp46 protein trafficking to the cell surface was compromised. Although Ly5.1C14R mice had normal number of NK cells, they showed an increased number of early maturation stage NK cells. CD49a+ILC1s were also increased but these cells lacked the expression of TRAIL. ILC3s that expressed NKp46 were not detectable and were not apparent when examined by T-bet expression. Thus, the C14R mutation reveals that NKp46 is important for NK cell and ILC differentiation, maturation and function. Significance Innate lymphoid cells (ILCs) play important roles in immune protection. Various subsets of ILCs express the activating receptor NKp46 which is capable of recognizing pathogen derived and tumor ligands and is necessary for immune protection. Here, we describe a spontaneous point mutation in the signal peptide of the NKp46 protein in congenic Ly5.1 mice which are widely used for tracking cells in vivo. This Ncr1 C14R mutation impairs NKp46 surface expression resulting in destabilization of Ncr1 and accumulation of NKp46 in the endoplasmic reticulum. Loss of stable NKp46 expression impaired the maturation of NKp46+ ILCs and altered the expression of TRAIL and T-bet in ILC1 and ILC3, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...