Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(19): 6536-6542, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37098843

RESUMEN

An innovative mineral carbonation method was developed to synthesize iron(II) carbonate (FeCO3) by cation complexation using 2,2'-bipyridine as ligand. First, complexes of iron(II) and different ligands were theoretically analyzed and discounted in terms of their temperature and pH-dependent stabilities, iron-ligand interactions, possible by-products and difficulty of analysis, choosing 2,2'-bipyridine as the most suitable ligand. Then, the Job plot was used to verify the complex formula. The stability of [Fe(bipy)3]2+ at pH 1-12 was further monitored for 7 days using UV-Vis and IR spectroscopy. Good stability was observed between pH 3 and 8, decreasing within pH 9-12 where the carbonation reaction occurs. Finally, the reaction between Na2CO3 and [Fe(bipy)3]2+ was performed at 21, 60, and 80 °C and pH 9-12. The total inorganic carbon measured after 2 h shows that the best carbonate conversion (50%) occurred at 80 °C and pH 11, being the most suitable conditions for carbon sequestration. SEM-EDS and XRD were used to examine the effect of synthesis parameters on the morphology and composition of FeCO3. The FeCO3 particle size increased from 10 µm at 21 °C to 26 and 170 µm at 60 and 80 °C respectively with no pH dependence. In addition, EDS analysis supported the carbonate identity, whose amorphous nature was confirmed by XRD. These results would help prevent the iron hydroxide precipitation problem during mineral carbonation using iron-rich silicates. These results are promising for its application as a carbon sequestration method with a CO2 uptake of around 50% obtaining Fe-rich carbonate.

2.
Sci Total Environ ; 718: 137394, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32325624

RESUMEN

Sulfate-reducing biofilters operated in semi-passive or passive modes constitute an approach of choice for treatment of acidic mining effluents. The aim of the present study involved examining the behavior of biofilters after use based on two modes of management, namely in unsaturated and saturated media. Two acidophilic biofilters were investigated following their mixing with different alkaline industrial residues (i.e., 25% fly ash biomass or 30% aluminum red mud, or 10% kiln dust). Percolation column tests for a 330-d period indicated that aluminum red mud and lime kiln dust (to a lesser extent) are efficient materials for maintaining the pH neutrality of biofilter leachate and to reduce release of metals (i.e., Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in spent biofilters. The storage of biofilters in saturated mode also makes it possible to preserve the reducing conditions of the environment and neutrality of the pH and to limit the dissolution of the solution of cadmium, nickel and zinc. Conversely, increased iron release is noted under saturated conditions. Finally, the results indicated that a mixture of biofilters and lime kiln dust is preferable to surface addition of these to reduce the loss of metals in leachates.


Asunto(s)
Minería , Ácidos , Concentración de Iones de Hidrógeno , Metales , Sulfatos
3.
J Environ Manage ; 263: 110371, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32174522

RESUMEN

Industrial activities lead to the contamination of large amounts of soils polluted by both inorganic and organic compounds, which are difficult to treat due to different chemical properties. The efficiency of a decontamination process developed to simultaneously remove mixed contamination of industrial soils was evaluated at the pilot-scale, as well as operating costs associated to that process to define the best remediation approach. The results showed that the treatment of the coarse fractions (>0.250 mm) of 40 kg of soil by attrition in countercurrent mode allowed the removal of 17-42% of As, 3-31% of Cr, 20-38% of Cu, and 64-75% of polychlorinated dioxins and furans (PCDD/F). Removals of 60% for As, 2.2% for Cr, 23% for Cu, and 74% for PCDD/F were obtained during the treatment of attrition sludge (<0.250 mm) by alkaline leaching process. However, the results of the techno-economic evaluation, carried out on a fixed plant with an annual treatment capacity of 7560 tons of soil treated (tst), showed that the estimated overall costs for the attrition process alone [scenario 1] (CAD$ 451/tst) were lower than the costs of the process, which additionally includes an alkaline leaching step to treat attrition sludge [scenario 2] (CAD$ 579/tst). This techno-economic evaluation also showed that the process becomes competitive with current disposal options (thermal desorption and landfilling - CAD$ 600/tst) from a certain treatment capacity, which is around of 3465 tst/yr for the scenario 1 and 6930 tst/yr for the scenario 2. On the other hand, the techno-economic evaluations are crucial to selecting feasible decontamination process for a soil remediation project, with considerations of the type of contamination, site characteristics and cost effectiveness.


Asunto(s)
Dioxinas , Furanos , Dibenzodioxinas Policloradas/análisis , Contaminantes del Suelo/análisis , Análisis Costo-Beneficio , Suelo
4.
Waste Manag ; 93: 138-152, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31235050

RESUMEN

Environmental legislation is forcing industrialized countries to rehabilitate contaminated lands. Expensive solutions are available to treat soils contaminated by metals (e.g., solidification, stabilization, and landfilling). Physical remediation techniques, which are less expensive, are able to efficiently separate metals from contaminated soils under specific physical conditions. In the current study, densimetric and mineralogical characterization of fractions of soil between 0.25 and 4 mm contaminated by municipal solid waste (MSW) ashes and metallurgical waste was performed. This characterization confirmed the usefulness of the jig and wet shaking table for separating the metal contaminants from the soil. Mineralogical characterization allowed the prediction of treatment efficiencies and potential limits. The jig performance was optimized based on densimetric characterization. Water washing coupled with ferrous material extraction using magnetic separation, and, attrition scrubbing coupled with the jig and wet shaking table, led to a removal yield varying from 42.1% to 83.4% for Ba, Cu, Pb, Sn, and Zn from the fraction of soil >0.25 mm contaminated by MSW ashes. The recovered treated mass varied from 57.1% to 73.4% (by weight). For the fraction of soil >0.25 mm contaminated with metallurgical residues, Cu and Zn removal yields were higher than 57.5%. The recovered treated mass from this soil fraction corresponded to 64.8% (by weight). Depending on the level and leachability of contaminants, the soil fractions <0.25 mm were recommended for appropriate treatments (solidification or stabilization) or for safe disposal via landfills.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Contaminación Ambiental , Suelo , Residuos Sólidos
5.
Environ Pollut ; 252(Pt A): 409-419, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31158669

RESUMEN

Understanding the spatial distribution of organic and/or inorganic contaminants is crucial to facilitate decision-making of rehabilitation strategies in order to ensure the most appropriate management of contaminated sites in terms of contaminant removals efficiencies and operating costs. For these reasons, various interpolation methods [Thiessen Polygon (TP) method, inverse of distance (IDW) method, ordinary kriging (OK), as well as sequential Gaussian simulations (SGS)] were used to better understand the spatial distribution of As, Cr, Cu, pentachlorophenol (PCP) and dioxins and furans (PCDD/F) found onto a specific industrial site. These methods do not only vary in complexity and efficiency but also lead to different results when using values coming from the same characterization campaign. Therefore, it is often necessary to evaluate their relevance by performing a comparative analysis. The results showed that ordinary kriging (OK) was a better estimator of the mean and more advanced compared to the two other methods of interpolation (TP and IDW). However, it appeared that SGS has the same power than OK but it also permitted to calculate a reliable value of the probabilities of exceeding regulatory cut-offs of contamination.


Asunto(s)
Monitoreo del Ambiente/métodos , Distribución Normal , Contaminantes del Suelo/análisis , Suelo/química , Análisis Espacial , Arsénico/análisis , Dioxinas/análisis , Monitoreo del Ambiente/estadística & datos numéricos , Furanos/análisis , Metales Pesados/análisis , Pentaclorofenol/análisis
6.
Water Res ; 140: 268-279, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29723816

RESUMEN

Mine drainage contaminated with metals is a major environmental threat since it is a source of water pollution with devastating effects on aquatic ecosystems. Conventional active treatment technologies are prohibitively expensive and so there is increasing demand to develop reliable, cost-effective and sustainable passive or semi-passive treatment. These are promising alternatives since they leverage the metabolism of microorganisms native to the disturbed site at in situ or close to in situ conditions. Since this is a biological approach, it is not clear if semi-passive treatment would be effective in remote locations with extremely cold weather such as at mines in the subarctic. In this study we tested the hypothesis that sulfate-reducing bacteria, which are microorganisms that promote metal precipitation, exist in subarctic mine environments and their activity can be stimulated by adding a readily available carbon source. An experiment was setup at a closed mine in the Yukon Territory, Canada, where leaching of Zn and Cd occurs. To test if semi-passive treatment could precipitate these metals and prevent further leaching from waste rock, molasses as a carbon source was added to anaerobic bioreactors mimicking the belowground in-situ conditions. Microbial community analysis confirmed that sulfate-reducing bacteria became enriched in the bioreactors upon addition of molasses. The population composition remained fairly stable over the 14 month operating period despite temperature shifts from 17 to 5 °C. Sulfate reduction functionality was confirmed by quantification of the gene for dissimilatory sulfite reductase. Metals were removed from underground mine drainage fed into the bioreactors with Zn removal efficiency varying between 20.9% in winter and 89.3% in summer, and Cd removal efficiency between 39% in winter and 90.5% in summer. This study demonstrated that stimulation of native SRB in MIW was possible and that in situ semi-passive treatment can be effective in removing metals despite the cold climate.


Asunto(s)
Reactores Biológicos , Metales/metabolismo , Sulfatos/metabolismo , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Reactores Biológicos/microbiología , Metales/química , Consorcios Microbianos/genética , Consorcios Microbianos/fisiología , Minería , Melaza , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Filogenia , ARN Ribosómico 16S , Sulfatos/química , Óxidos de Azufre , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/instrumentación , El Yukón
7.
J Environ Manage ; 209: 23-36, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29275282

RESUMEN

The current research investigated the effectiveness of a gravimetric process (shaking table) to treat soil contaminated by municipal solid waste. A detailed characterization of the inorganic pollutants was performed, followed by concentrating the metals within smaller volumes using the shaking table technology. The densimetric examination of the 1-2 mm and 0.250-1 mm fractions of the contaminated soil showed that lead (Pb), copper (Cu), and tin (Sn) were mostly concentrated in the heavy fraction (metal removals > 50%). Scanning electron microscopy coupled with elemental analysis indicated the relevance of using gravimetric processes to treat this soil sample. The influence of shaking table parameters was determined using a Box-Behnken design. The tilt and washing water flow demonstrated significant effects on the motion of the 1-2 mm soil fraction and on the removal of Pb, Cu, and Sn. The results obtained under the optimal settings of the shaking table defined using the Box-Behnken methodology when treating the 1-2 mm fraction were close to those obtained when using dense media separation. The recovered mass of the concentrate was approximately 20.8% (w.w-1) of the total mass. The removals of Pb, Cu, and Sn were estimated to be 67.3%, 54.5% and 54.6% respectively. The predicted and experimental mass distributions of the medium (1-2 mm) and fine-sized (0.250-1 mm) particles were compared successively under some selected conditions. The mass distribution of both fractions showed similar tendencies in response to the forces applied by each condition. However, lowering the forces induced by the bumping action and the flowing film was recommended so as to efficiently treat the fine fraction (0.250-1 mm). The recovered mass of the concentrate (10%) was slightly lower than that obtained by dense media separation (13%). However, satisfactory removal yields were obtained for Pb, Cu, and Sn (42.7%, 23.6%, and 35% respectively).


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo , Residuos Sólidos , Cobre , Contaminación Ambiental , Suelo
8.
J Environ Manage ; 198(Pt 1): 1-8, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28437707

RESUMEN

Concerns about global warming phenomena induced the development of research about the control of anthropogenic greenhouse gases emissions. The current work studies on the scaling up of aqueous mineral carbonation route to reduce the CO2 emissions at the chimney of industrial emitters. The reactivity of serpentinite in a stirred tank reactor was studied for several partial pressures of CO2 (pCO2) (0.4, 0.7, 1.3 and 1.6 bar). Prior to carbonation, the feedstock was finely grinded and dehydroxyled at 650 °C by a thermal treatment. The major content of magnetite was removed (7.5 wt% · total weight-1). Experiments were carried out under batch mode at room temperature using real cement plant flue gas (14-18 vol% CO2) and open pit drainage water. The effect of the raw water and the pCO2 on the carbonation efficiency was measured. First, the main results showed a positive effect of the quarry water as a slight enhancement of the Mg leaching in comparison with distilled water. Secondly, a pCO2 of 1.3 bar was the optimal working pressure which provided the highest efficiency of the carbonation reaction (0.8 gCO2 · g residue-1). Precipitation rates of dissolved CO2 ranged from 7% to 33%. Pure precipitate was obtained and essentially composed of Nesquehonite. At a pCO2 of 1.3 bar, additional physical retreatment of the solid material after being contacted with 6 batches of gas enhanced considerably mineral carbonation efficiency (0.17 gCO2 · g residue-1.).


Asunto(s)
Dióxido de Carbono , Carbonatos , Gases , Efecto Invernadero , Minerales , Presión
9.
J Hazard Mater ; 333: 194-214, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28359036

RESUMEN

The contamination of soils by metals such as arsenic, chromium, copper and organic compounds such as pentachlorophenol (PCP) and dioxins and furans (PCDD/F) is a major problem in industrialized countries. Excavation followed by disposal in an appropriate landfilling is usually used site to manage these contaminated soils. Many researches have been conducted to develop physical, biological, thermal and chemical methods to allow the rehabilitation of contaminated sites. Thermal treatments including thermal desorption seemed to be the most appropriate methods, allowing the removal of more than 99.99% of organic contaminants but, they are ineffective for inorganic compounds. Biological treatments have been developed to remove inorganic and hydrophobic organic contaminants but their applications are limited to soils contaminated by easily biodegradable organic compounds. Among the physical technologies available, attrition is the most commonly used technique for the rehabilitation of soils contaminated by both organic and inorganic contaminants. Chemical processes using acids, bases, redox agents and surfactants seemed to be an interesting option to simultaneously extract organic and inorganic contaminants from soils. This paper will provide an overview of the recent developments in the field of decontamination technologies applicable for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soils.


Asunto(s)
Arsénico/aislamiento & purificación , Cromo/aislamiento & purificación , Cobre/aislamiento & purificación , Dibenzofuranos Policlorados/aislamiento & purificación , Restauración y Remediación Ambiental/métodos , Pentaclorofenol/aislamiento & purificación , Dibenzodioxinas Policloradas/aislamiento & purificación , Contaminantes del Suelo/aislamiento & purificación
10.
Environ Technol ; 38(24): 3167-3179, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28162038

RESUMEN

This paper presents an innovative process for the recovery of valuable metals from a mixture of spent batteries. Different types of batteries, including alkaline, zinc-carbon (Zn-C), nickel cadmium (Ni-Cd), nickel metal hydride (Ni-MH), lithium ion (Li-ion) and lithium metallic (Li-M) batteries, were mixed according to the proportion of the Canadian sales of batteries. A Box-Behnken design was applied to find the optimum leaching conditions allowing a maximum of valuable metal removals from a mixture of spent batteries in the presence of an inorganic acid and a reducing agent. The results highlighted the positive effect of sodium metabisulfite on the performance of metals removal, especially for Mn. The solid/liquid ratio and the concentration of H2SO4 were the main factors affecting the leaching behavior of valuable metals (Zn, Mn, Cd, Ni) present in spent batteries. Finally, the optimum leaching conditions were found as follows: one leaching step, solid/liquid ratio = 10.9%, [H2SO4] = 1.34 M, sodium metabisulfite (Na2S2O5) = 0.45 g/g of battery powder and retention time = 45 min. Under such conditions, the removal yields achieved were 94% for Mn, 81% for Cd, 99% for Zn, 96% for Co and 68% for Ni.


Asunto(s)
Residuos Electrónicos/análisis , Metales/química , Reciclaje/métodos , Canadá , Suministros de Energía Eléctrica/clasificación , Solubilidad
11.
Environ Technol ; 38(1): 116-127, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27161049

RESUMEN

The Fenton oxidation using phenanthrene (Phe), fluoranthene (Fle) and benzo[a]pyrene (BaP) as representative polycyclic aromatic hydrocarbon (PAH) contaminants was examined. The effect of the H2O2 concentration, the temperature and the competition between the PAHs in different solutions (methanol, surfactant and quartz) was investigated. The Fenton oxidation process was performed at pH = 2.5. The best conditions were recorded by adding 15 g H2O2 L-1 with a molar H2O2/Fe2+ ratio of 10/1 at T = 60°C. Phe, Fle and BaP were efficiently degraded in aqueous solution (Phe = 99%, Fle = 99% and BaP = 90%). The present study demonstrated that Phe, Fle and BaP were degraded to intermediate compounds and also oxidized to carbon dioxide. Among the by-products obtained, phthalic acids and benzoic acid were recorded as the major products.


Asunto(s)
Benzo(a)pireno/química , Fluorenos/química , Peróxido de Hidrógeno/química , Hierro/química , Oxidantes/química , Fenantrenos/química , Contaminantes Ambientales/química , Oxidación-Reducción , Cuarzo/química , Compuestos de Amonio Cuaternario/química , Soluciones , Tensoactivos/química
12.
Environ Technol ; 38(15): 1862-1877, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27652498

RESUMEN

The objective of this study was to evaluate, at a pilot scale, the performance of an attrition process for removing As, Cr, Cu, pentachlorophenol (PCP) and polychlorodibenzodioxins and furans (PCDDF) from a 1-4 mm soil fraction. A Box-Behnken experimental design was utilized to evaluate the influence of several parameters (temperature, surfactant concentration and pulp density) and to optimize the main operating parameters of this attrition process. According to the results, the concentration of surfactant (cocamidopropylbetaine-BW) was the main parameter influencing both PCP and PCDDF removal from the 1-4 mm soil fraction by attrition. The behavior of each 2,3,7,8-PCDD/F congener during the attrition process was studied. The results indicated that the concentration of surfactant had a significant and positive effect on the removal of almost all of the dioxin and furan. The removal of 56%, 55%, 50%, 67% and 62% of the contaminants were obtained for As, Cr, Cu, PCP and PCDDF, respectively, using the optimized conditions ([BW]= 2% (w.w-1), T = 25°C and PD = 40% (w.w-1)). These results showed that attrition in the presence of a surfactant can be efficiently used to remediate the coarse fractions of soil contaminated by As, Cr, Cu, PCP and PCDDF.


Asunto(s)
Contaminación Ambiental/prevención & control , Contaminantes del Suelo/química , Arsénico , Cromo , Cobre , Dioxinas , Furanos , Pentaclorofenol , Suelo
13.
J Environ Manage ; 181: 95-107, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27318877

RESUMEN

Spent batteries contain hazardous materials, including numerous metals (cadmium, lead, nickel, zinc, etc.) that are present at high concentrations. Therefore, proper treatment of these wastes is necessary to prevent their harmful effects on human health and the environment. Current recycling processes are mainly applied to treat each type of spent battery separately. In this laboratory study, a hydrometallurgical process has been developed to simultaneously and efficiently solubilize metals from spent batteries. Among the various chemical leaching agents tested, sulfuric acid was found to be the most efficient and cheapest reagent. A Box-Behnken design was used to identify the influence of several parameters (acid concentration, solid/liquid ratio, retention time and number of leaching steps) on the removal of metals from spent batteries. According to the results, the solid/liquid ratio and acid concentration seemed to be the main parameters influencing the solubilization of zinc, manganese, nickel, cadmium and cobalt from spent batteries. According to the results, the highest metal leaching removals were obtained under the optimal leaching conditions (pulp density = 180 g/L (w/v), [H2SO4] = 1 M, number of leaching step = 3 and leaching time = 30 min). Under such optimum conditions, the removal yields obtained were estimated to be 65% for Mn, 99.9% for Cd, 100% for Zn, 74% for Co and 68% for Ni. Further studies will be performed to improve the solubilization of Mn and to selectively recover the metals.


Asunto(s)
Suministros de Energía Eléctrica , Residuos Peligrosos , Metales Pesados/química , Reciclaje/métodos , Ácidos Sulfúricos/química , Cadmio/análisis , Cadmio/química , Cobalto/análisis , Cobalto/química , Plomo/análisis , Plomo/química , Manganeso/análisis , Manganeso/química , Metales Pesados/análisis , Níquel/análisis , Níquel/química , Zinc/análisis , Zinc/química
14.
Environ Sci Pollut Res Int ; 23(17): 17635-46, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27236443

RESUMEN

This work focuses on the influence of different parameters on the efficiency of steel slag carbonation in slurry phase under ambient temperature. In the first part, a response surface methodology was used to identify the effect and the interactions of the gas pressure, liquid/solid (L/S) ratio, gas/liquid ratio (G/L), and reaction time on the CO2 removed/sample and to optimize the parameters. In the second part, the parameters' effect on the dissolution of CO2 and its conversion into carbonates were studied more in detail. The results show that the pressure and the G/L ratio have a positive effect on both the dissolution and the conversion of CO2. These results have been correlated with the higher CO2 mass introduced in the reactor. On the other hand, an important effect of the L/S ratio on the overall CO2 removal and more specifically on the carbonate precipitation has been identified. The best results were obtained L/S ratios of 4:1 and 10:1 with respectively 0.046 and 0.052 gCO2 carbonated/g sample. These yields were achieved after 10 min reaction, at ambient temperature, and 10.68 bar of total gas pressure following direct gas treatment.


Asunto(s)
Dióxido de Carbono/química , Carbonatos/química , Minerales/química , Acero/química , Temperatura
15.
Environ Technol ; 37(15): 1983-95, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26729603

RESUMEN

Three soils polluted by municipal solid waste (MSW) incineration residues and containing various concentrations of Cu, Pb, Sb, Sn and Zn were treated using magnetism, gravity separation (jig and shaking table) and flotation/leaching. The process removed between 18% and 39% of the contaminants present in soil 1, between 31% and 53% of the contaminants present in soil 2 and between 42% and 56% of the contaminants present in soil 3. Polycyclic aromatic hydrocarbons were present only in soil 3, and the process removed 64% of its PAHs total content. Magnetism seemed to be the most efficient technique to remove metals from contaminated soils, followed by gravity separation and finally flotation/leaching. The global efficiency of the process was higher when the initial contaminant concentrations were lower (smaller proportions of MSW incineration residues). The estimated costs of the process, including direct and indirect costs, varied from $82 to $88 per ton of treated soil depending on the proportion of MSW incineration residues mixed with the soil.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Metales Pesados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Residuos Sólidos/análisis , Metales Pesados/aislamiento & purificación , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Contaminantes del Suelo/aislamiento & purificación
16.
J Environ Manage ; 163: 70-7, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26292776

RESUMEN

Mineral carbonation (MC) represents a promising alternative for sequestering CO2. In this work, the CO2 sequestration capacity of the available calcium-bearing materials waste concrete and anorthosite tailings is assessed in gas-solid-liquid and gas-solid routes using 18.2% flue CO2 gas. The objective is to screen for a better potential residue and phase route and as the ultimate purpose to develop a cost-effective process. The results indicate the possibility of removing 66% from inlet CO2 using waste concrete for the aqueous route. However, the results that were obtained with the carbonation of anorthosite were less significant, with 34% as the maximal percentage of CO2 removal. The difference in terms of reactivity could be explained by the accessibility to calcium. In fact, anorthosite presents a framework structure wherein the calcium is trapped, which could slow the calcium dissolution into the aqueous phase compared to the concrete sample, where calcium can more easily leach. In the other part of the study concerning gas-solid carbonation, the results of CO2 removal did not exceed 15%, which is not economically interesting for scaling up the process. The results obtained with waste concrete samples in aqueous phase are interesting. In fact, 34.6% of the introduced CO2 is converted into carbonate after 15 min of contact with the gas without chemical additives and at a relatively low gas pressure. Research on the optimization of the aqueous process using waste concrete should be performed to enhance the reaction rate and to develop a cost-effective process.


Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Minerales , Calcio/química , Dióxido de Carbono/química , Carbonatos/química , Gases , Minerales/química , Agua/química
17.
Environ Sci Pollut Res Int ; 22(17): 13486-95, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25940479

RESUMEN

Mineral carbonation of serpentinite mining residue offers an environmentally secure and permanent storage of carbon dioxide. The strategy of using readily available mining residue for the direct treatment of flue gas could improve the energy demand and economics of CO2 sequestration by avoiding the mineral extraction and separate CO2 capture steps. The present is a laboratory scale study to assess the possibility of CO2 fixation in serpentinite mining residues via direct gas-solid reaction. The degree of carbonation is measured both in the absence and presence of water vapor in a batch reactor. The gas used is a simulated gas mixture reproducing an average cement flue gas CO2 composition of 18 vol.% CO2. The reaction parameters considered are temperature, total gas pressure, time, and concentration of water vapor. In the absence of water vapor, the gas-solid carbonation of serpentinite mining residues is negligible, but the residues removed CO2 from the feed gas possibly due to reversible adsorption. The presence of small amount of water vapor enhances the gas-solid carbonation, but the measured rates are too low for practical application. The maximum CO2 fixation obtained is 0.07 g CO2 when reacting 1 g of residue at 200 °C and 25 barg (pCO2 ≈ 4.7) in a gas mixture containing 18 vol.% CO2 and 10 vol.% water vapor in 1 h. The fixation is likely surface limited and restricted due to poor gas-solid interaction. It was identified that both the relative humidity and carbon dioxide-water vapor ratio have a role in CO2 fixation regardless of the percentage of water vapor.


Asunto(s)
Asbestos Serpentinas/química , Dióxido de Carbono/química , Secuestro de Carbono , Carbonatos/química , Minería , Vapor , Estudios de Factibilidad , Gases/química , Presión , Temperatura
18.
Environ Sci Technol ; 48(9): 5163-70, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24669999

RESUMEN

Mineral carbonation is known as one of the safest ways to sequester CO2. Nevertheless, the slow kinetics and low carbonation rates constitute a major barrier for any possible industrial application. To date, no studies have focused on reacting serpentinite with a relatively low partial pressure of CO2 (pCO2) close to flue gas conditions. In this work, finely ground and heat-treated serpentinite [Mg3Si2O5(OH)4] extracted from mining residues was reacted with a 18.2 vol % CO2 gas stream at moderate global pressures to investigate the effect on CO2 solubility and Mg leaching. Serpentinite dissolution rates were also measured to define the rate-limiting step. Successive batches of gas were contacted with the same serpentinite to identify surface-limiting factors using scanning electron microscopy (SEM) analysis. Investigation of the serpentinite carbonation reaction mechanisms under conditions close to a direct flue gas treatment showed that increased dissolution rates could be achieved relative to prior work, with an average Mg dissolution rate of 3.55 × 10(-11) mol cm(-2) s(-1). This study provides another perspective of the feasibility of applying a mineral carbonation process to reduce industrial greenhouse gas (GHG) emissions from large emission sources.


Asunto(s)
Asbestos Serpentinas/química , Dióxido de Carbono/química , Gases/química , Minerales/química , Agua/química , Frío , Calor , Microscopía Electrónica de Rastreo , Minería , Presión
19.
Environ Technol ; 35(1-4): 177-86, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24600855

RESUMEN

In this paper, flotation in acidic conditions and alkaline leaching soil washing processes were compared to decontaminate four soils with variable contamination with metals, pentachlorophenol (PCP), and polychlorodibenzo dioxins and furans (PCDD/F). The measured concentrations of the four soils prior treatment were between 50 and 250 mg/kg for As, 35 and 220mg/kg for Cr, 80 and 350mg/kg for Cu, and 2.5 and 30mg/kg for PCP. PCDD/F concentrations reached 1394, 1375, 3730, and 6289ng/kg for F1, S1, S2, and S3 soils, respectively. The tests were carried out with masses of 100g of soil (fraction 0-2 mm) in a 2 L beaker or in a 1 L flotation cell. Soil flotation in sulphuric acid for 1 h at 60 degreeC with three flotation cycles using the surfactant cocamidopropyl betaine (BW) at 1% allows the solubilization of metals and PCP with average removal yields of 85%, 51%, 90%, and 62% for As, Cr, Cu, and PCP, respectively. The alkaline leaching for 2 h at 80 degreeC solubilizes As, Cr, Cu, and PCP with average removal yields of 60%, 32%, 77%, and 87%, respectively. Tests on PCDD/F solubilization with different surfactants were carried out in combination with the alkaline leaching process. PCDD/F removal yields of 25%, 72%, 70%, and 74% for F1, S1, S2, and S3 soils, respectively, were obtained using the optimized conditions.


Asunto(s)
Benzofuranos/aislamiento & purificación , Metales/aislamiento & purificación , Pentaclorofenol/química , Pentaclorofenol/aislamiento & purificación , Dibenzodioxinas Policloradas/análogos & derivados , Contaminantes del Suelo/aislamiento & purificación , Tensoactivos/química , Álcalis/química , Álcalis/aislamiento & purificación , Benzofuranos/química , Descontaminación/métodos , Concentración de Iones de Hidrógeno , Metales/química , Dibenzodioxinas Policloradas/química , Dibenzodioxinas Policloradas/aislamiento & purificación , Contaminantes del Suelo/química , Ultrafiltración/métodos
20.
J Environ Manage ; 132: 197-206, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24325819

RESUMEN

In recent years, an efficient and economically attractive leaching process has been developed to remove metals from copper-based treated wood wastes. This study explored the applicability of this leaching process using chromated copper arsenate (CCA) treated wood samples with different initial metal loading and elapsed time between wood preservation treatment and remediation. The sulfuric acid leaching process resulted in the solubilization of more than 87% of the As, 70% of the Cr, and 76% of the Cu from CCA-chips and in the solubilization of more than 96% of the As, 78% of the Cr and 91% of the Cu from CCA-sawdust. The results showed that the performance of this leaching process might be influenced by the initial metal loading of the treated wood wastes and the elapsed time between preservation treatment and remediation. The effluents generated during the leaching steps were treated by precipitation-coagulation to satisfy the regulations for effluent discharge in municipal sewers. Precipitation using ferric chloride and sodium hydroxide was highly efficient, removing more than 99% of the As, Cr, and Cu. It appears that this leaching process can be successfully applied to remove metals from different CCA-treated wood samples and then from the effluents.


Asunto(s)
Arseniatos/química , Contaminantes Ambientales/química , Restauración y Remediación Ambiental/métodos , Eliminación de Residuos/métodos , Ácidos Sulfúricos/química , Madera/química , Precipitación Química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA