Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glia ; 72(5): 960-981, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38363046

RESUMEN

In the adult brain, activity-dependent myelin plasticity is required for proper learning and memory consolidation. Myelin loss, alteration, or even subtle structural modifications can therefore compromise the network activity, leading to functional impairment. In multiple sclerosis, spontaneous myelin repair process is possible, but it is heterogeneous among patients, sometimes leading to functional recovery, often more visible at the motor level than at the cognitive level. In cuprizone-treated mouse model, massive brain demyelination is followed by spontaneous and robust remyelination. However, reformed myelin, although functional, may not exhibit the same morphological characteristics as developmental myelin, which can have an impact on the activity of neural networks. In this context, we used the cuprizone-treated mouse model to analyze the structural, functional, and cognitive long-term effects of transient demyelination. Our results show that an episode of demyelination induces despite remyelination long-term cognitive impairment, such as deficits in spatial working memory, social memory, cognitive flexibility, and hyperactivity. These deficits were associated with a reduction in myelin content in the medial prefrontal cortex (mPFC) and hippocampus (HPC), as well as structural myelin modifications, suggesting that the remyelination process may be imperfect in these structures. In vivo electrophysiological recordings showed that the demyelination episode altered the synchronization of HPC-mPFC activity, which is crucial for memory processes. Altogether, our data indicate that the myelin repair process following transient demyelination does not allow the complete recovery of the initial myelin properties in cortical structures. These subtle modifications alter network features, leading to prolonged cognitive deficits in mice.


Asunto(s)
Disfunción Cognitiva , Enfermedades Desmielinizantes , Humanos , Animales , Ratones , Vaina de Mielina , Enfermedades Desmielinizantes/inducido químicamente , Cuprizona/toxicidad , Encéfalo , Modelos Animales de Enfermedad , Disfunción Cognitiva/inducido químicamente , Ratones Endogámicos C57BL , Oligodendroglía/fisiología
2.
Stem Cell Reports ; 16(7): 1792-1804, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34087164

RESUMEN

In response to corpus callosum (CC) demyelination, subventricular zone-derived neural progenitors (SVZdNPs) are mobilized and generate new myelinating oligodendrocytes (OLG). Here, we examine the putative immunomodulatory properties of endogenous SVZdNPs during demyelination in the cuprizone model. SVZdNP density was higher in the lateral and rostral CC regions, and demyelination was inversely correlated with activated microglial density and pro-inflammatory cytokine levels. Single-cell RNA sequencing showed that CC areas with high levels of SVZdNP mobilization were enriched in a microglial cell subpopulation with an immunomodulatory signature. We propose MFGE8 (milk fat globule-epidermal growth factor-8) and ß3 integrin as a ligand/receptor pair involved in dialogue between SVZdNPs and microglia. Immature SVZdNPs mobilized to the demyelinated CC were found highly enriched in MFGE8, which promoted the phagocytosis of myelin debris in vitro. Overall, these results demonstrate that, in addition to their cell replacement capacity, endogenous progenitors have immunomodulatory properties, highlighting a new role for endogenous SVZdNPs in myelin regeneration.


Asunto(s)
Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/prevención & control , Microglía/metabolismo , Células-Madre Neurales/metabolismo , Animales , Diferenciación Celular , Cuerpo Calloso/patología , Cuprizona , Inflamación/patología , Ventrículos Laterales/patología , Ligandos , Ratones Transgénicos , Neuroprotección , Receptores de Superficie Celular/metabolismo
3.
Front Cell Neurosci ; 15: 604865, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935649

RESUMEN

It is widely thought that brain repair does not occur, but myelin regeneration provides clear evidence to the contrary. Spontaneous remyelination may occur after injury or in multiple sclerosis (MS). However, the efficiency of remyelination varies considerably between MS patients and between the lesions of each patient. Myelin repair is essential for optimal functional recovery, so a profound understanding of the cells and mechanisms involved in this process is required for the development of new therapeutic strategies. In this review, we describe how animal models and modern cell tracing and imaging methods have helped to identify the cell types involved in myelin regeneration. In addition to the oligodendrocyte progenitor cells identified in the 1990s as the principal source of remyelinating cells in the central nervous system (CNS), other cell populations, including subventricular zone-derived neural progenitors, Schwann cells, and even spared mature oligodendrocytes, have more recently emerged as potential contributors to CNS remyelination. We will also highlight the conditions known to limit endogenous repair, such as aging, chronic inflammation, and the production of extracellular matrix proteins, and the role of astrocytes and microglia in these processes. Finally, we will present the discrepancies between observations in humans and in rodents, discussing the relationship of findings in experimental models to myelin repair in humans. These considerations are particularly important from a therapeutic standpoint.

4.
J Physiol ; 595(5): 1637-1655, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27861919

RESUMEN

KEY POINTS: Incomplete development of the neural circuits that control breathing contributes to respiratory disorders in pre-term infants. Manifestations include respiratory instability, prolonged apnoeas and poor ventilatory responses to stimuli. Based on evidence suggesting that omega-3 polyunsaturated fatty acids (n-3 PUFA) improves brain development, we determined whether n-3 PUFA supplementation (via the maternal diet) improves respiratory function in 10-11-day-old rat pups. n-3 PUFA treatment prolonged apnoea duration but augmented the relative pulmonary surface area and the ventilatory response to hypoxia. During hypoxia, the drop in body temperature measured in treated pups was 1 °C less than in controls. n-3 PUFA treatment also reduced microglia cell density in the brainstem. Although heterogeneous, the results obtained in rat pups constitute a proof of concept that n-3 PUFA supplementation can have positive effects on neonatal respiration. This includes a more sustained hypoxic ventilatory response and a decreased respiratory inhibition during laryngeal chemoreflex. ABSTRACT: Most pre-term infants present respiratory instabilities and apnoeas as a result of incomplete development of the neural circuits that control breathing. Because omega-3 polyunsaturated fatty acids (n-3 PUFA) benefit brain development, we hypothesized that n-3 PUFA supplementation (via the maternal diet) improves respiratory function in rat pups. Pups received n-3 PUFA supplementation from an enriched diet (13 g kg-1 of n-3 PUFA) administered to the mother from birth until the experiments were performed (postnatal days 10-11). Controls received a standard diet (0.3 g kg-1 of n-3 PUFA). Breathing was measured in intact pups at rest and during hypoxia (FiO2  = 0.12; 20 min) using whole body plethysmography. The duration of apnoeas induced by stimulating the laryngeal chemoreflex (LCR) was measured under anaesthesia. Lung morphology was compared between groups. Maternal n-3 PUFA supplementation effectively raised n-3 PUFA levels above control levels both in the blood and brainstem of pups. In intact, resting pups, n-3 PUFA increased the frequency and duration of apnoeas, especially in females. During hypoxia, n-3 PUFA supplemented pups hyperventilated 23% more than controls; their anapyrexic response was 1 °C less than controls. In anaesthetized pups, n-3 PUFA shortened the duration of LCR-induced apnoeas by 32%. The relative pulmonary surface area of n-3 PUFA supplemented pups was 12% higher than controls. Although n-3 PUFA supplementation augments apnoeas, there is no clear evidence of deleterious consequences on these pups. Based on the improved lung architecture and responses to respiratory challenges, this neonatal treatment appears to be beneficial to the offspring. However, further experiments are necessary to establish its overall safety.


Asunto(s)
Suplementos Dietéticos , Ácidos Grasos Omega-3/farmacología , Respiración/efectos de los fármacos , Animales , Animales Recién Nacidos , Apnea/fisiopatología , Femenino , Hipoxia/fisiopatología , Laringe/fisiología , Masculino , Intercambio Materno-Fetal , Embarazo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...