Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762132

RESUMEN

Chronic kidney disease (CKD) patients undergoing dialysis are at high risk of bone fractures. CKD-induced mineral and bone disorder is extended to periodontal disease due to changes in the ionic composition of saliva in CKD patients, dysregulating mineralization, hindering regeneration and thereby promoting the progression of dental complications. Despite the importance of cementum for overall oral health, the mechanisms that regulate its development and regeneration are not well comprehended, and a lack of sufficient in vitro experimental models has hindered research progress. In this study, the impact of experimental conditions on the calcification of cementoblasts was systematically investigated, aimed at establishing a standardized and validated model for the calcification of cementoblasts. The effects of phosphate, calcium, ascorbic acid, ß-glycerolphosphate, dexamethasone, and fetal calf serum on the calcification process of cementoblasts were analyzed over a wide range of concentrations and time points by investigating calcium content, cell viability, gene expression and kinase activity. Cementoblasts calcified in a concentration- and time-dependent manner with higher concentrations of supplements cause a higher degree of calcification but decreased cell viability. Phosphate and calcium have a significantly stronger effect on cementoblast calcification processes compared to osteogenic supplements: ascorbic acid, ß-glycerolphosphate, and dexamethasone induce calcification over a wide range of osteogenic signalling pathways, with osteopontin being a central target of gene regulation. Conversely, treatment with ascorbic acid, ß-glycerolphosphate, and dexamethasone leads to activating only selected pathways, especially promoting bone sialoprotein expression. The developed and validated cementoblast calcification protocol, incubating up to 60% confluent cementoblasts with 1.9 mmol L-1 of phosphate supplementation for a reasonable, multi-pathway calcification induction and 10 mmol L-1 ß-glycerolphosphate, 75 µmol L-1 ascorbic acid and 10 nmol L-1 dexamethasone for a reasonable osteogenic differentiation-based calcification induction, provides standard in vitro experimental models for better understanding cementoblast function and regeneration.


Asunto(s)
Calcinosis , Cemento Dental , Humanos , Calcio , Glicerofosfatos , Osteogénesis , Diálisis Renal , Periodoncio , Calcio de la Dieta , Ácido Ascórbico/farmacología , Dexametasona/farmacología
2.
Toxins (Basel) ; 14(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36287917

RESUMEN

The gut microbiota consists of trillions of microorganisms, fulfilling important roles in metabolism, nutritional intake, physiology and maturation of the immune system, but also aiding and abetting the progression of chronic kidney disease (CKD). The human gut microbiome consists of bacterial species from five major bacterial phyla, namely Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia. Alterations in the members of these phyla alter the total gut microbiota, with a decline in the number of symbiotic flora and an increase in the pathogenic bacteria, causing or aggravating CKD. In addition, CKD-associated alteration of this intestinal microbiome results in metabolic changes and the accumulation of amines, indoles and phenols, among other uremic metabolites, which have a feedforward adverse effect on CKD patients, inhibiting renal functions and increasing comorbidities such as atherosclerosis and cardiovascular diseases (CVD). A classification of uremic toxins according to the degree of known toxicity based on the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence was selected to identify the representative uremic toxins from small water-soluble compounds, protein-bound compounds and middle molecules and their relation to the gut microbiota was summarized. Gut-derived uremic metabolites accumulating in CKD patients further exhibit cell-damaging properties, damage the intestinal epithelial cell wall, increase gut permeability and lead to the translocation of bacteria and endotoxins from the gut into the circulatory system. Elevated levels of endotoxins lead to endotoxemia and inflammation, further accelerating CKD progression. In recent years, the role of the gut microbiome in CKD pathophysiology has emerged as an important aspect of corrective treatment; however, the mechanisms by which the gut microbiota contributes to CKD progression are still not completely understood. Therefore, this review summarizes the current state of research regarding CKD and the gut microbiota, alterations in the microbiome, uremic toxin production, and gut epithelial barrier degradation.


Asunto(s)
Microbioma Gastrointestinal , Insuficiencia Renal Crónica , Humanos , Microbioma Gastrointestinal/fisiología , Tóxinas Urémicas , Insuficiencia Renal Crónica/metabolismo , Bacterias , Homeostasis , Endotoxinas , Fenoles , Indoles/uso terapéutico , Aminas , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...