Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 106(2): 207-222, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28792090

RESUMEN

Quinone-based compounds have been exploited to treat infectious diseases and cancer, with such chemicals often functioning as inhibitors of key metabolic pathways or as prodrugs. Here, we screened an aziridinyl 1,4-benzoquinone (ABQ) library against the causative agents of trypanosomiasis, and cutaneous leishmaniasis, identifying several potent structures that exhibited EC50 values of <100 nM. However, these compounds also displayed significant toxicity towards mammalian cells indicating that they are not suitable therapies for systemic infections. Using anti-T. brucei ABQs as chemical probes, we demonstrated that these exhibit different trypanocidal modes of action. Many functioned as type I nitroreductase (TbNTR) or cytochrome P450 reductase (TbCPR) dependent prodrugs that, following activation, generate metabolites which promote DNA damage, specifically interstrand crosslinks (ICLs). Trypanosomes lacking TbSNM1, a nuclease that specifically repairs ICLs, are hypersensitive to most ABQ prodrugs, a phenotype exacerbated in cells also engineered to express elevated levels of TbNTR or TbCPR. In contrast, ABQs that contain substituent groups on the biologically active aziridine do not function as TbNTR or TbCPR-activated prodrugs and do not promote DNA damage. By unravelling how ABQs mediate their activities, features that facilitate the desired anti-parasitic growth inhibitory effects could be incorporated into new, safer compounds targeting these neglected tropical diseases.


Asunto(s)
Benzoquinonas/metabolismo , Nitrorreductasas/metabolismo , Tripanocidas/farmacología , Animales , Aziridinas/metabolismo , Benzoquinonas/farmacología , ADN/metabolismo , Daño del ADN/efectos de los fármacos , Humanos , NADPH-Ferrihemoproteína Reductasa/metabolismo , Profármacos , Relación Estructura-Actividad , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo , Trypanosoma cruzi/metabolismo
2.
Mol Microbiol ; 96(4): 827-38, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25689597

RESUMEN

All living cells are subject to agents that promote DNA damage. A particularly lethal lesion are interstrand cross-links (ICL), a property exploited by several anti-cancer chemotherapies. In yeast and humans, an enzyme that plays a key role in repairing such damage are the PSO2/SNM1 nucleases. Here, we report that Trypanosoma brucei, the causative agent of African trypanosomiasis, possesses a bona fide member of this family (called TbSNM1) with expression of the parasite enzyme able to suppress the sensitivity yeast pso2Δ mutants display towards mechlorethamine, an ICL-inducing compound. By disrupting the Tbsnm1 gene, we demonstrate that TbSNM1 activity is non-essential to the medically relevant T. brucei life cycle stage. However, trypanosomes lacking this enzyme are more susceptible to bi- and tri-functional DNA alkylating agents with this phenotype readily complemented by ectopic expression of Tbsnm1. Genetically modified variants of the null mutant line were subsequently used to establish the anti-parasitic mechanism of action of nitrobenzylphosphoramide mustard and aziridinyl nitrobenzamide prodrugs, compounds previously shown to possess potent trypanocidal properties while exhibiting limited toxicity to mammalian cells. This established that these agents, following activation by a parasite specific type I nitroreductase, produce metabolites that promote formation of ICLs leading to inhibition of trypanosomal growth.


Asunto(s)
Daño del ADN , Reparación del ADN , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética , Aziridinas/farmacología , Reparación del ADN/efectos de los fármacos , Prueba de Complementación Genética , Genoma de Protozoos , Mecloretamina/farmacología , Mutación , Nitrorreductasas/metabolismo , Fenotipo , Saccharomyces cerevisiae/genética , Análisis de Secuencia , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/crecimiento & desarrollo
3.
Antimicrob Agents Chemother ; 56(11): 5821-30, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22948871

RESUMEN

Nitroheterocyclic prodrugs are used to treat infections caused by Trypanosoma cruzi and Trypanosoma brucei. A key component in selectivity involves a specific activation step mediated by a protein homologous with type I nitroreductases, enzymes found predominantly in prokaryotes. Using data from determinations based on flavin cofactor, oxygen-insensitive activity, substrate range, and inhibition profiles, we demonstrate that NTRs from T. cruzi and T. brucei display many characteristics of their bacterial counterparts. Intriguingly, both enzymes preferentially use NADH and quinones as the electron donor and acceptor, respectively, suggesting that they may function as NADH:ubiquinone oxidoreductases in the parasite mitochondrion. We exploited this preference to determine the trypanocidal activity of a library of aziridinyl benzoquinones against bloodstream-form T. brucei. Biochemical screens using recombinant NTR demonstrated that several quinones were effective substrates for the parasite enzyme, having K(cat)/K(m) values 2 orders of magnitude greater than those of nifurtimox and benznidazole. In tests against T. brucei, antiparasitic activity mirrored the biochemical data, with the most potent compounds generally being preferred enzyme substrates. Trypanocidal activity was shown to be NTR dependent, as parasites with elevated levels of this enzyme were hypersensitive to the aziridinyl agent. By unraveling the biochemical characteristics exhibited by the trypanosomal NTRs, we have shown that quinone-based compounds represent a class of trypanocidal compound.


Asunto(s)
Benzoquinonas/farmacología , Nitrorreductasas/antagonistas & inhibidores , Profármacos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Benzoquinonas/química , Escherichia coli/genética , Cinética , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Terapia Molecular Dirigida , NAD/química , NAD/metabolismo , Nifurtimox/farmacología , Nitroimidazoles/farmacología , Nitrorreductasas/química , Nitrorreductasas/metabolismo , Profármacos/química , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Especificidad por Sustrato , Tripanocidas/química , Trypanosoma brucei brucei/enzimología , Trypanosoma cruzi/enzimología
4.
Bioorg Med Chem Lett ; 22(4): 1770-3, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22264480

RESUMEN

A group of novel synthetic indoloisoquinolines was prepared and its potential as a novel series of small-molecule anti-malarial leads was assessed. The structure-activity relationship on variation of three distinct regions of chemical space was investigated. A lead compound was generated with an activity close to that observed for a known anti-malarial natural product, dihydrousambarensine, that shares the indoloisoquinoline template structure.


Asunto(s)
Antimaláricos , Indoles/química , Isoquinolinas/síntesis química , Isoquinolinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/síntesis química , Antimaláricos/química , Antimaláricos/farmacología , Humanos , Indoles/síntesis química , Indoles/farmacología , Isoquinolinas/química , Estructura Molecular , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...