Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nat Aging ; 4(4): 584-594, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528230

RESUMEN

Multiomics has shown promise in noninvasive risk profiling and early detection of various common diseases. In the present study, in a prospective population-based cohort with ~18 years of e-health record follow-up, we investigated the incremental and combined value of genomic and gut metagenomic risk assessment compared with conventional risk factors for predicting incident coronary artery disease (CAD), type 2 diabetes (T2D), Alzheimer disease and prostate cancer. We found that polygenic risk scores (PRSs) improved prediction over conventional risk factors for all diseases. Gut microbiome scores improved predictive capacity over baseline age for CAD, T2D and prostate cancer. Integrated risk models of PRSs, gut microbiome scores and conventional risk factors achieved the highest predictive performance for all diseases studied compared with models based on conventional risk factors alone. The present study demonstrates that integrated PRSs and gut metagenomic risk models improve the predictive value over conventional risk factors for common chronic diseases.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Neoplasias de la Próstata , Masculino , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Estudios Prospectivos , Factores de Riesgo , Enfermedad de la Arteria Coronaria/genética , Puntuación de Riesgo Genético
3.
Microb Genom ; 10(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38376378

RESUMEN

Monitoring antibiotic-resistant bacteria (ARB) and understanding the effects of antimicrobial drugs on the human microbiome and resistome are crucial for public health. However, no study has investigated the association between antimicrobial treatment and the microbiome-resistome relationship in long-term care facilities, where residents act as reservoirs of ARB but are not included in the national surveillance for ARB. We conducted shotgun metagenome sequencing of oral and stool samples from long-term care facility residents and explored the effects of antimicrobial treatment on the human microbiome and resistome using two types of comparisons: cross-sectional comparisons based on antimicrobial treatment history in the past 6 months and within-subject comparisons between stool samples before, during and 2-4 weeks after treatment using a single antimicrobial drug. Cross-sectional analysis revealed two characteristics in the group with a history of antimicrobial treatment: the archaeon Methanobrevibacter was the only taxon that significantly increased in abundance, and the total abundance of antimicrobial resistance genes (ARGs) was also significantly higher. Within-subject comparisons showed that taxonomic diversity did not decrease during treatment, suggesting that the effect of the prescription of a single antimicrobial drug in usual clinical treatment on the gut microbiota is likely to be smaller than previously thought, even among very elderly people. Additional analysis of the detection limit of ARGs revealed that they could not be detected when contig coverage was <2.0. This study is the first to report the effects of usual antimicrobial treatments on the microbiome and resistome of long-term care facility residents.


Asunto(s)
Antiinfecciosos , Microbiota , Anciano , Humanos , Antagonistas de Receptores de Angiotensina , Estudios Transversales , Cuidados a Largo Plazo , Inhibidores de la Enzima Convertidora de Angiotensina , ADN , Análisis de Secuencia de ADN
5.
Trends Microbiol ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38246848

RESUMEN

The human microbiome has been increasingly recognized as having potential use for disease prediction. Predicting the risk, progression, and severity of diseases holds promise to transform clinical practice, empower patient decisions, and reduce the burden of various common diseases, as has been demonstrated for cardiovascular disease or breast cancer. Combining multiple modifiable and non-modifiable risk factors, including high-dimensional genomic data, has been traditionally favored, but few studies have incorporated the human microbiome into models for predicting the prospective risk of disease. Here, we review research into the use of the human microbiome for disease prediction with a particular focus on prospective studies as well as the modulation and engineering of the microbiome as a therapeutic strategy.

6.
Arterioscler Thromb Vasc Biol ; 44(2): 477-487, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37970720

RESUMEN

BACKGROUND: Dyslipidemia is treated effectively with statins, but treatment has the potential to induce new-onset type-2 diabetes. Gut microbiota may contribute to this outcome variability. We assessed the associations of gut microbiota diversity and composition with statins. Bacterial associations with statin-associated new-onset type-2 diabetes (T2D) risk were also prospectively evaluated. METHODS: We examined shallow-shotgun-sequenced fecal samples from 5755 individuals in the FINRISK-2002 population cohort with a 17+-year-long register-based follow-up. Alpha-diversity was quantified using Shannon index and beta-diversity with Aitchison distance. Species-specific differential abundances were analyzed using general multivariate regression. Prospective associations were assessed with Cox regression. Applicable results were validated using gradient boosting. RESULTS: Statin use associated with differing taxonomic composition (R2, 0.02%; q=0.02) and 13 differentially abundant species in fully adjusted models (MaAsLin; q<0.05). The strongest positive association was with Clostridium sartagoforme (ß=0.37; SE=0.13; q=0.02) and the strongest negative association with Bacteroides cellulosilyticus (ß=-0.31; SE=0.11; q=0.02). Twenty-five microbial features had significant associations with incident T2D in statin users, of which only Bacteroides vulgatus (HR, 1.286 [1.136-1.457]; q=0.03) was consistent regardless of model adjustment. Finally, higher statin-associated T2D risk was seen with [Ruminococcus] torques (ΔHRstatins, +0.11; q=0.03), Blautia obeum (ΔHRstatins, +0.06; q=0.01), Blautia sp. KLE 1732 (ΔHRstatins, +0.05; q=0.01), and beta-diversity principal component 1 (ΔHRstatin, +0.07; q=0.03) but only when adjusting for demographic covariates. CONCLUSIONS: Statin users have compositionally differing microbiotas from nonusers. The human gut microbiota is associated with incident T2D risk in statin users and possibly has additive effects on statin-associated new-onset T2D risk.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dislipidemias , Microbioma Gastrointestinal , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Estudios Transversales , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Dislipidemias/diagnóstico , Dislipidemias/tratamiento farmacológico , Dislipidemias/epidemiología
7.
Am J Physiol Renal Physiol ; 325(3): F345-F362, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37440367

RESUMEN

Gut microbiome research has increased dramatically in the last decade, including in renal health and disease. The field is moving from experiments showing mere association to causation using both forward and reverse microbiome approaches, leveraging tools such as germ-free animals, treatment with antibiotics, and fecal microbiota transplantations. However, we are still seeing a gap between discovery and translation that needs to be addressed, so that patients can benefit from microbiome-based therapies. In this guideline paper, we discuss the key considerations that affect the gut microbiome of animals and clinical studies assessing renal function, many of which are often overlooked, resulting in false-positive results. For animal studies, these include suppliers, acclimatization, baseline microbiota and its normalization, littermates and cohort/cage effects, diet, sex differences, age, circadian differences, antibiotics and sweeteners, and models used. Clinical studies have some unique considerations, which include sampling, gut transit time, dietary records, medication, and renal phenotypes. We provide best-practice guidance on sampling, storage, DNA extraction, and methods for microbial DNA sequencing (both 16S rRNA and shotgun metagenome). Finally, we discuss follow-up analyses, including tools available, metrics, and their interpretation, and the key challenges ahead in the microbiome field. By standardizing study designs, methods, and reporting, we will accelerate the findings from discovery to translation and result in new microbiome-based therapies that may improve renal health.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Masculino , Femenino , ARN Ribosómico 16S/genética , Trasplante de Microbiota Fecal , Antibacterianos
8.
J Allergy Clin Immunol ; 151(4): 943-952, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36587850

RESUMEN

BACKGROUND: The gut-lung axis is generally recognized, but there are few large studies of the gut microbiome and incident respiratory disease in adults. OBJECTIVE: We sought to investigate the association and predictive capacity of the gut microbiome for incident asthma and chronic obstructive pulmonary disease (COPD). METHODS: Shallow metagenomic sequencing was performed for stool samples from a prospective, population-based cohort (FINRISK02; N = 7115 adults) with linked national administrative health register-derived classifications for incident asthma and COPD up to 15 years after baseline. Generalized linear models and Cox regressions were used to assess associations of microbial taxa and diversity with disease occurrence. Predictive models were constructed using machine learning with extreme gradient boosting. Models considered taxa abundances individually and in combination with other risk factors, including sex, age, body mass index, and smoking status. RESULTS: A total of 695 and 392 statistically significant associations were found between baseline taxonomic groups and incident asthma and COPD, respectively. Gradient boosting decision trees of baseline gut microbiome abundance predicted incident asthma and COPD in the validation data sets with mean area under the curves of 0.608 and 0.780, respectively. Cox analysis showed that the baseline gut microbiome achieved higher predictive performance than individual conventional risk factors, with C-indices of 0.623 for asthma and 0.817 for COPD. The integration of the gut microbiome and conventional risk factors further improved prediction capacities. CONCLUSIONS: The gut microbiome is a significant risk factor for incident asthma and incident COPD and is largely independent of conventional risk factors.


Asunto(s)
Asma , Microbioma Gastrointestinal , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Humanos , Estudios Prospectivos , Factores de Riesgo
9.
Nat Rev Nephrol ; 19(3): 153-167, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36631562

RESUMEN

A large body of evidence has emerged in the past decade supporting a role for the gut microbiome in the regulation of blood pressure. The field has moved from association to causation in the last 5 years, with studies that have used germ-free animals, antibiotic treatments and direct supplementation with microbial metabolites. The gut microbiome can regulate blood pressure through several mechanisms, including through gut dysbiosis-induced changes in microbiome-associated gene pathways in the host. Microbiota-derived metabolites are either beneficial (for example, short-chain fatty acids and indole-3-lactic acid) or detrimental (for example, trimethylamine N-oxide), and can activate several downstream signalling pathways via G protein-coupled receptors or through direct immune cell activation. Moreover, dysbiosis-associated breakdown of the gut epithelial barrier can elicit systemic inflammation and disrupt intestinal mechanotransduction. These alterations activate mechanisms that are traditionally associated with blood pressure regulation, such as the renin-angiotensin-aldosterone system, the autonomic nervous system, and the immune system. Several methodological and technological challenges remain in gut microbiome research, and the solutions involve minimizing confounding factors, establishing causality and acting globally to improve sample diversity. New clinical trials, precision microbiome medicine and computational methods such as Mendelian randomization have the potential to enable leveraging of the microbiome for translational applications to lower blood pressure.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión , Animales , Disbiosis/complicaciones , Disbiosis/terapia , Mecanotransducción Celular , Presión Sanguínea
10.
Sci Rep ; 12(1): 22236, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564466

RESUMEN

Varying technologies and experimental approaches used in microbiome studies often lead to irreproducible results due to unwanted technical variations. Such variations, often unaccounted for and of unknown source, may interfere with true biological signals, resulting in misleading biological conclusions. In this work, we aim to characterize the major sources of technical variations in microbiome data and demonstrate how in-silico approaches can minimize their impact. We analyzed 184 pig faecal metagenomes encompassing 21 specific combinations of deliberately introduced factors of technical and biological variations. Using the novel Removing Unwanted Variations-III-Negative Binomial (RUV-III-NB), we identified several known experimental factors, specifically storage conditions and freeze-thaw cycles, as likely major sources of unwanted variation in metagenomes. We also observed that these unwanted technical variations do not affect taxa uniformly, with freezing samples affecting taxa of class Bacteroidia the most, for example. Additionally, we benchmarked the performances of different correction methods, including ComBat, ComBat-seq, RUVg, RUVs, and RUV-III-NB. While RUV-III-NB performed consistently robust across our sensitivity and specificity metrics, most other methods did not remove unwanted variations optimally. Our analyses suggest that a careful consideration of possible technical confounders is critical during experimental design of microbiome studies, and that the inclusion of technical replicates is necessary to efficiently remove unwanted variations computationally.


Asunto(s)
Microbiota , Animales , Porcinos , Microbiota/genética , Metagenoma , Congelación , Bacteroidetes , Heces
12.
Microbiol Spectr ; 10(5): e0247322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36036576

RESUMEN

With increasing emergence of antimicrobial resistant bacteria (ARB) and the risk this poses to public health, there are growing concerns regarding water pollution contributing to the spread of antimicrobial resistance (AMR) through inadequate amenities and the rapid rate of urbanization. In this study, the impact of different anthropogenic factors on the prevalence of AMR in the urban water cycle in Stellenbosch, South Africa (SA) was examined. Carbapenem, colistin, gentamicin and sulfamethoxazole resistant Gram-negative bacteria were recovered by selectively culturing aqueous, biofilm and sediment samples from sites impacted to varying degrees by informal settlements, residential, industrial, and agricultural activities, as well as a municipal wastewater treatment works (WWTW). A metagenomic approach determined community profiles and dominant AMR genes at various sites, while carbapenem resistant colonies were characterized using whole genome sequencing (WGS). Isolates recovered from agricultural sites exhibited relatively high levels of resistance to carbapenems and colistin, whereas sites impacted by domestic run-off had a higher prevalence of resistance to gentamicin and sulfamethoxazole, corresponding to usage data in SA. Similar microbial taxa were identified in raw sewage, sites downstream of informal settlements, and industrial areas that have limited waste removal infrastructure while WWTW were seen to reduce the prevalence of ARB in treated wastewater when operating efficiently. The results indicate the multiple complex drivers underpinning environmental dissemination of AMR and suggest that WWTW assist in removing AMR from the environment, reinforcing the necessity of adequate waste removal infrastructure and antibiotic stewardship measures to mitigate AMR transmission. IMPORTANCE The results from this study are of importance as they fill a gap in the data available on environmental AMR in South Africa to date. This study was done in parallel with co-investigators focusing on the prevalence of various antimicrobials at the same sites selected in our study, verifying that the sites that are influenced by informal settlements and WWTW influent had higher concentrations of antimicrobials and antimicrobial metabolites. The various locations of the sample sites selected, the frequency of the samples collected over a year, and the different types of samples collected at each site all contribute to informing how AMR in the environment might be affected by anthropogenic activity.


Asunto(s)
Antiinfecciosos , Farmacorresistencia Bacteriana , Aguas Residuales , Aguas del Alcantarillado , Ciclo Hidrológico , Colistina , Antagonistas de Receptores de Angiotensina , Efectos Antropogénicos , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología , Carbapenémicos , Antiinfecciosos/farmacología , Gentamicinas , Sulfametoxazol
13.
mSystems ; 7(2): e0016722, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35369727

RESUMEN

We introduce the operational genomic unit (OGU) method, a metagenome analysis strategy that directly exploits sequence alignment hits to individual reference genomes as the minimum unit for assessing the diversity of microbial communities and their relevance to environmental factors. This approach is independent of taxonomic classification, granting the possibility of maximal resolution of community composition, and organizes features into an accurate hierarchy using a phylogenomic tree. The outputs are suitable for contemporary analytical protocols for community ecology, differential abundance, and supervised learning while supporting phylogenetic methods, such as UniFrac and phylofactorization, that are seldom applied to shotgun metagenomics despite being prevalent in 16S rRNA gene amplicon studies. As demonstrated in two real-world case studies, the OGU method produces biologically meaningful patterns from microbiome data sets. Such patterns further remain detectable at very low metagenomic sequencing depths. Compared with taxonomic unit-based analyses implemented in currently adopted metagenomics tools, and the analysis of 16S rRNA gene amplicon sequence variants, this method shows superiority in informing biologically relevant insights, including stronger correlation with body environment and host sex on the Human Microbiome Project data set and more accurate prediction of human age by the gut microbiomes of Finnish individuals included in the FINRISK 2002 cohort. We provide Woltka, a bioinformatics tool to implement this method, with full integration with the QIIME 2 package and the Qiita web platform, to facilitate adoption of the OGU method in future metagenomics studies. IMPORTANCE Shotgun metagenomics is a powerful, yet computationally challenging, technique compared to 16S rRNA gene amplicon sequencing for decoding the composition and structure of microbial communities. Current analyses of metagenomic data are primarily based on taxonomic classification, which is limited in feature resolution. To solve these challenges, we introduce operational genomic units (OGUs), which are the individual reference genomes derived from sequence alignment results, without further assigning them taxonomy. The OGU method advances current read-based metagenomics in two dimensions: (i) providing maximal resolution of community composition and (ii) permitting use of phylogeny-aware tools. Our analysis of real-world data sets shows that it is advantageous over currently adopted metagenomic analysis methods and the finest-grained 16S rRNA analysis methods in predicting biological traits. We thus propose the adoption of OGUs as an effective practice in metagenomic studies.


Asunto(s)
Metagenoma , Microbiota , Humanos , Filogenia , ARN Ribosómico 16S/genética , Ecología
14.
Cell Metab ; 34(5): 719-730.e4, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35354069

RESUMEN

The gut microbiome has shown promise as a predictive biomarker for various diseases. However, the potential of gut microbiota for prospective risk prediction of liver disease has not been assessed. Here, we utilized shallow shotgun metagenomic sequencing of a large population-based cohort (N > 7,000) with ∼15 years of follow-up in combination with machine learning to investigate the predictive capacity of gut microbial predictors individually and in conjunction with conventional risk factors for incident liver disease. Separately, conventional and microbial factors showed comparable predictive capacity. However, microbiome augmentation of conventional risk factors using machine learning significantly improved the performance. Similarly, disease-free survival analysis showed significantly improved stratification using microbiome-augmented models. Investigation of predictive microbial signatures revealed previously unknown taxa for liver disease, as well as those previously associated with hepatic function and disease. This study supports the potential clinical validity of gut metagenomic sequencing to complement conventional risk factors for prediction of liver diseases.


Asunto(s)
Microbioma Gastrointestinal , Hepatopatías , Microbiota , Microbioma Gastrointestinal/genética , Humanos , Metagenómica , Estudios Prospectivos , Factores de Riesgo
15.
Elife ; 112022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35191377

RESUMEN

Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to transfer to another. This has potential to rapidly promote new adaptive trajectories such as zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align in barriers to recombination within a given time frame. Chief among these barriers is the physical separation of species with distinct ecologies in separate niches. Within the genus Campylobacter, there are species with divergent ecologies, from rarely isolated single-host specialists to multihost generalist species that are among the most common global causes of human bacterial gastroenteritis. Here, by characterizing these contrasting ecologies, we can quantify HGT among sympatric and allopatric species in natural populations. Analyzing recipient and donor population ancestry among genomes from 30 Campylobacter species, we show that cohabitation in the same host can lead to a six-fold increase in HGT between species. This accounts for up to 30% of all SNPs within a given species and identifies highly recombinogenic genes with functions including host adaptation and antimicrobial resistance. As described in some animal and plant species, ecological factors are a major evolutionary force for speciation in bacteria and changes to the host landscape can promote partial convergence of distinct species through HGT.


Asunto(s)
Antiinfecciosos , Campylobacter , Animales , Bacterias/genética , Evolución Biológica , Campylobacter/genética , Transferencia de Gen Horizontal , Filogenia
16.
Nat Genet ; 54(2): 134-142, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35115689

RESUMEN

Human genetic variation affects the gut microbiota through a complex combination of environmental and host factors. Here we characterize genetic variations associated with microbial abundances in a single large-scale population-based cohort of 5,959 genotyped individuals with matched gut microbial metagenomes, and dietary and health records (prevalent and follow-up). We identified 567 independent SNP-taxon associations. Variants at the LCT locus associated with Bifidobacterium and other taxa, but they differed according to dairy intake. Furthermore, levels of Faecalicatena lactaris associated with ABO, and suggested preferential utilization of secreted blood antigens as energy source in the gut. Enterococcus faecalis levels associated with variants in the MED13L locus, which has been linked to colorectal cancer. Mendelian randomization analysis indicated a potential causal effect of Morganella on major depressive disorder, consistent with observational incident disease analysis. Overall, we identify and characterize the intricate nature of host-microbiota interactions and their association with disease.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Variación Genética , Interacciones Microbiota-Huesped , Polimorfismo de Nucleótido Simple , Sistema del Grupo Sanguíneo ABO/genética , Bifidobacterium/fisiología , Clostridiales/fisiología , Estudios de Cohortes , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/microbiología , Fibras de la Dieta , Enterococcus faecalis/fisiología , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Humanos , Lactasa/genética , Complejo Mediador/genética , Análisis de la Aleatorización Mendeliana , Metagenoma , Morganella/fisiología
17.
Mol Biol Evol ; 39(3)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143670

RESUMEN

Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of CO2 equivalent units, kgCO2e) using the freely available Green Algorithms calculator (www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgCO2e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm's greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgCO2e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research.


Asunto(s)
Huella de Carbono , Biología Computacional , Algoritmos , Estudio de Asociación del Genoma Completo , Programas Informáticos
18.
Diabetes Care ; 45(4): 811-818, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100347

RESUMEN

OBJECTIVE: To examine the previously unknown long-term association between gut microbiome composition and incident type 2 diabetes in a representative population cohort. RESEARCH DESIGN AND METHODS: We collected fecal samples from 5,572 Finns (mean age 48.7 years; 54.1% women) in 2002 who were followed up for incident type 2 diabetes until 31 December 2017. The samples were sequenced using shotgun metagenomics. We examined associations between gut microbiome composition and incident diabetes using multivariable-adjusted Cox regression models. We first used the eastern Finland subpopulation to obtain initial findings and validated these in the western Finland subpopulation. RESULTS: Altogether, 432 cases of incident diabetes occurred over the median follow-up of 15.8 years. We detected four species and two clusters consistently associated with incident diabetes in the validation models. These four species were Clostridium citroniae (hazard ratio [HR] 1.21; 95% CI 1.04-1.42), C. bolteae (HR 1.20; 95% CI 1.04-1.39), Tyzzerella nexilis (HR 1.17; 95% CI 1.01-1.36), and Ruminococcus gnavus (HR 1.17; 95% CI 1.01-1.36). The positively associated clusters, cluster 1 (HR 1.18; 95% CI 1.02-1.38) and cluster 5 (HR 1.18; 95% CI 1.02-1.36), mostly consisted of these same species. CONCLUSIONS: We observed robust species-level taxonomic features predictive of incident type 2 diabetes over long-term follow-up. These findings build on and extend previous mainly cross-sectional evidence and further support links between dietary habits, metabolic diseases, and type 2 diabetes that are modulated by the gut microbiome. The gut microbiome can potentially be used to improve disease prediction and uncover novel therapeutic targets for diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Adulto , Estudios de Cohortes , Estudios Transversales , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Finlandia/epidemiología , Microbioma Gastrointestinal/genética , Humanos , Masculino , Persona de Mediana Edad
19.
Genome Biol ; 22(1): 266, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521459

RESUMEN

While long-read sequencing allows for the complete assembly of bacterial genomes, long-read assemblies contain a variety of errors. Here, we present Trycycler, a tool which produces a consensus assembly from multiple input assemblies of the same genome. Benchmarking showed that Trycycler assemblies contained fewer errors than assemblies constructed with a single tool. Post-assembly polishing further reduced errors and Trycycler+polishing assemblies were the most accurate genomes in our study. As Trycycler requires manual intervention, its output is not deterministic. However, we demonstrated that multiple users converge on similar assemblies that are consistently more accurate than those produced by automated assembly tools.


Asunto(s)
Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Secuencia de Consenso
20.
Genome Res ; 31(11): 2131-2137, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34479875

RESUMEN

The number of publicly available microbiome samples is continually growing. As data set size increases, bottlenecks arise in standard analytical pipelines. Faith's phylogenetic diversity (Faith's PD) is a highly utilized phylogenetic alpha diversity metric that has thus far failed to effectively scale to trees with millions of vertices. Stacked Faith's phylogenetic diversity (SFPhD) enables calculation of this widely adopted diversity metric at a much larger scale by implementing a computationally efficient algorithm. The algorithm reduces the amount of computational resources required, resulting in more accessible software with a reduced carbon footprint, as compared to previous approaches. The new algorithm produces identical results to the previous method. We further demonstrate that the phylogenetic aspect of Faith's PD provides increased power in detecting diversity differences between younger and older populations in the FINRISK study's metagenomic data.


Asunto(s)
Microbiota , Microbiota/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...