Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1264801, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908545

RESUMEN

Bacterial communication is a fundamental process used to synchronize gene expression and collective behavior among the bacterial population. The most studied bacterial communication system is quorum sensing, a cell density system, in which the concentration of inductors increases to a threshold level allowing detection by specific receptors. As a result, bacteria can change their behavior in a coordinated way. While in Pseudomonas quorum sensing based on the synthesis of N-acyl homoserine lactone molecules is well studied, volatile organic compounds, although considered to be communication signals in the rhizosphere, are understudied. The Pseudomonas fluorescens MFE01 strain has a very active type six secretion system that can kill some competitive bacteria. Furthermore, MFE01 emits numerous volatile organic compounds, including 1-undecene, which contributes to the aerial inhibition of Legionella pneumophila growth. Finally, MFE01 appears to be deprived of N-acyl homoserine lactone synthase. The main objective of this study was to explore the role of 1-undecene in the communication of MFE01. We constructed a mutant affected in undA gene encoding the enzyme responsible for 1-undecene synthesis to provide further insight into the role of 1-undecene in MFE01. First, we studied the impacts of this mutation both on volatile organic compounds emission, using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry and on L. pneumophila long-range inhibition. Then, we analyzed influence of 1-undecene on MFE01 coordinated phenotypes, including type six secretion system activity and biofilm formation. Next, to test the ability of MFE01 to synthesize N-acyl homoserine lactones in our conditions, we investigated in silico the presence of corresponding genes across the MFE01 genome and we exposed its biofilms to an N-acyl homoserine lactone-degrading enzyme. Finally, we examined the effects of 1-undecene emission on MFE01 biofilm maturation and aerial communication using an original experimental set-up. This study demonstrated that the ΔundA mutant is impaired in biofilm maturation. An exposure of the ΔundA mutant to the volatile compounds emitted by MFE01 during the biofilm development restored the biofilm maturation process. These findings indicate that P. fluorescens MFE01 uses 1-undecene emission for aerial communication, reporting for the first time this volatile organic compound as bacterial intraspecific communication signal.

2.
Environ Microbiol ; 25(11): 2564-2579, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37622480

RESUMEN

The type VI secretion system (T6SS) is a contractile nanomachine widespread in Gram-negative bacteria. The T6SS injects effectors into target cells including eukaryotic hosts and competitor microbial cells and thus participates in pathogenesis and intermicrobial competition. Pseudomonas fluorescens MFE01 possesses a single T6SS gene cluster that confers biocontrol properties by protecting potato tubers against the phytopathogen Pectobacterium atrosepticum (Pca). Here, we demonstrate that a functional T6SS is essential to protect potato tuber by reducing the pectobacteria population. Fluorescence microscopy experiments showed that MFE01 displays an aggressive behaviour with an offensive T6SS characterized by continuous and intense T6SS firing activity. Interestingly, we observed that T6SS firing is correlated with rounding of Pectobacterium cells, suggesting delivery of a potent cell wall targeting effector. Mutagenesis coupled with functional assays then revealed that a putative T6SS secreted amidase, Tae3Pf , is mainly responsible for MFE01 toxicity towards Pca. Further studies finally demonstrated that Tae3Pf is toxic when produced in the periplasm, and that its toxicity is counteracted by the Tai3Pf inner membrane immunity protein.


Asunto(s)
Pectobacterium , Pseudomonas fluorescens , Solanum tuberosum , Sistemas de Secreción Tipo VI , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Mutagénesis , Pectobacterium/genética , Pectobacterium/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Microorganisms ; 10(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36013994

RESUMEN

Bacteria are often exposed to nitrosative stress from their environment, from atmospheric pollution or from the defense mechanisms of other organisms. Reactive nitrogen species (RNS), which mediate nitrosative stress, are notably involved in the mammalian immune response through the production of nitric oxide (NO) by the inducible NO synthase iNOS. RNS are highly reactive and can alter various biomolecules such as lipids, proteins and DNA, making them toxic for biological organisms. Resistance to RNS is therefore important for the survival of bacteria in various environments, and notably to successfully infect their host. The fuel combustion processes used in industries and transports are responsible for the emission of important quantities of two major RNS, NO and the more toxic nitrogen dioxide (NO2). Human exposure to NO2 is notably linked to increases in lung infections. While the response of bacteria to NO in liquid medium is well-studied, few data are available on their exposure to gaseous NO and NO2. This study showed that NO2 is much more toxic than NO at similar concentrations for the airborne bacterial strain Pseudomonas fluorescens MFAF76a. The response to NO2 involves a wide array of effectors, while the response to NO seemingly focuses on the Hmp flavohemoprotein. Results showed that NO2 induces the production of other RNS, unlike NO, which could explain the differences between the effects of these two molecules.

4.
Microbiol Spectr ; 9(1): e0040421, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34378969

RESUMEN

Legionella pneumophila, the causative agent of Legionnaires' disease, is mostly found in man-made water systems and is one of the most closely monitored waterborne pathogens. With the aim of finding natural ways to control waterborne pathogens and thus further reduce the impact of disinfection by-products on human health, some studies have demonstrated the ability of bacteria to kill Legionella through the production of secondary metabolites or antimicrobial compounds. Here, we describe an unexpected growth inhibition of L. pneumophila when exposed to a physically separated strain of Pseudomonas fluorescens, designated as MFE01. Most of the members of the Legionellaceae family are sensitive to the volatile substances emitted by MFE01, unlike other bacteria tested. Using headspace solid-phase microextraction GC-MS strategy, a volatilome comparison revealed that emission of 1-undecene, 2-undecanone, and 2-tridecanone were mainly reduced in a Tn5-transposon mutant unable to inhibit at distance the growth of L. pneumophila strain Lens. We showed that 1-undecene was mainly responsible for the inhibition at distance in vitro, and led to cell lysis in small amounts, as determined by gas chromatography-mass spectrometry (GC-MS). Collectively, our results provide new insights into the mode of action of bacterial volatiles and highlight them as potent anti-Legionella agents to focus research on novel strategies to fight legionellosis. IMPORTANCE Microbial volatile compounds are molecules whose activities are increasingly attracting the attention of researchers. Indeed, they can act as key compounds in long-distance intrakingdom and interkingdom communication, but also as antimicrobials in competition and predation. In fact, most studies to date have focused on their antifungal activities and only a few have reported on their antibacterial properties. Here, we describe that 1-undecene, naturally produced by P. fluorescens, is a volatile with potent activity against bacteria of the genus Legionella. In small amounts, it is capable of inducing cell lysis even when the producing strain is physically separated from the target. This is the first time that such activity is described. This molecule could therefore constitute an efficient compound to counter bacterial pathogens whose treatment may fail, particularly in pulmonary diseases. Indeed, inhalation of these volatiles should be considered as a possible route of therapy in addition to antibiotic treatment.


Asunto(s)
Antibacterianos/farmacología , Legionella pneumophila/efectos de los fármacos , Pseudomonas fluorescens/metabolismo , Humanos , Legionella pneumophila/crecimiento & desarrollo , Enfermedad de los Legionarios/terapia , Pseudomonas fluorescens/genética , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/farmacología
5.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361010

RESUMEN

Biofilms are complex structures formed by a community of microbes adhering to a surface and/or to each other through the secretion of an adhesive and protective matrix. The establishment of these structures requires a coordination of action between microorganisms through powerful communication systems such as quorum-sensing. Therefore, auxiliary bacteria capable of interfering with these means of communication could be used to prevent biofilm formation and development. The phytopathogen Rhizobium rhizogenes, which causes hairy root disease and forms large biofilms in hydroponic crops, and the biocontrol agent Rhodococcus erythropolis R138 were used for this study. Changes in biofilm biovolume and structure, as well as interactions between rhizobia and rhodococci, were monitored by confocal laser scanning microscopy with appropriate fluorescent biosensors. We obtained direct visual evidence of an exchange of signals between rhizobia and the jamming of this communication by Rhodococcus within the biofilm. Signaling molecules were characterized as long chain (C14) N-acyl-homoserine lactones. The role of the Qsd quorum-quenching pathway in biofilm alteration was confirmed with an R. erythropolis mutant unable to produce the QsdA lactonase, and by expression of the qsdA gene in a heterologous host, Escherichia coli. Finally, Rhizobium biofilm formation was similarly inhibited by a purified extract of QsdA enzyme.


Asunto(s)
Agrobacterium/fisiología , Biopelículas , Percepción de Quorum , Rhodococcus/fisiología , Acil-Butirolactonas/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo
6.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805191

RESUMEN

Flagella-driven motility is an important trait for bacterial colonization and virulence. Flagella rotate and propel bacteria in liquid or semi-liquid media to ensure such bacterial fitness. Bacterial flagella are composed of three parts: a membrane complex, a flexible-hook, and a flagellin filament. The most widely studied models in terms of the flagellar apparatus are E. coli and Salmonella. However, there are many differences between these enteric bacteria and the bacteria of the Pseudomonas genus. Enteric bacteria possess peritrichous flagella, in contrast to Pseudomonads, which possess polar flagella. In addition, flagellar gene expression in Pseudomonas is under a four-tiered regulatory circuit, whereas enteric bacteria express flagellar genes in a three-step manner. Here, we use knowledge of E. coli and Salmonella flagella to describe the general properties of flagella and then focus on the specificities of Pseudomonas flagella. After a description of flagellar structure, which is highly conserved among Gram-negative bacteria, we focus on the steps of flagellar assembly that differ between enteric and polar-flagellated bacteria. In addition, we summarize generalities concerning the fuel used for the production and rotation of the flagellar macromolecular complex. The last part summarizes known regulatory pathways and potential links with the type-six secretion system (T6SS).


Asunto(s)
Flagelos/metabolismo , Pseudomonas/metabolismo , Proteínas Bacterianas/metabolismo , Quimiotaxis , AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Salmonella/metabolismo , Temperatura , Torque , Virulencia
7.
Plant Cell Environ ; 44(1): 304-322, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32890441

RESUMEN

In Normandy, flax is a plant of important economic interest because of its fibres. Fusarium oxysporum, a telluric fungus, is responsible for the major losses in crop yield and fibre quality. Several methods are currently used to limit the use of phytochemicals on crops. One of them is the use of plant growth promoting rhizobacteria (PGPR) occurring naturally in the rhizosphere. PGPR are known to act as local antagonists to soil-borne pathogens and to enhance plant resistance by eliciting the induced systemic resistance (ISR). In this study, we first investigated the cell wall modifications occurring in roots and stems after inoculation with the fungus in two flax varieties. First, we showed that both varieties displayed different cell wall organization and that rapid modifications occurred in roots and stems after inoculation. Then, we demonstrated the efficiency of a Bacillus subtilis strain to limit Fusarium wilt on both varieties with a better efficiency for one of them. Finally, thermo-gravimetry was used to highlight that B. subtilis induced modifications of the stem properties, supporting a reinforcement of the cell walls. Our findings suggest that the efficiency and the mode of action of the PGPR B. subtilis is likely to be flax variety dependent.


Asunto(s)
Bacillus , Pared Celular/microbiología , Lino/microbiología , Fusarium , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Tallos de la Planta/microbiología , Bacillus/metabolismo , Cromatografía de Gases , Lino/crecimiento & desarrollo , Lino/inmunología , Técnica del Anticuerpo Fluorescente , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Espectroscopía Infrarroja por Transformada de Fourier
8.
Microorganisms ; 8(5)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344878

RESUMEN

Type VI secretion systems (T6SSs) are contractile bacterial multiprotein nanomachines that enable the injection of toxic effectors into prey cells. The Pseudomonas fluorescens MFE01 strain has T6SS antibacterial activity and can immobilise competitive bacteria through the T6SS. Hcp1 (hemolysin co-regulated protein 1), a constituent of the T6SS inner tube, is involved in such prey cell inhibition of motility. Paradoxically, disruption of the hcp1 or T6SS contractile tail tssC genes results in the loss of the mucoid and motile phenotypes in MFE01. Here, we focused on the relationship between T6SS and flagella-associated motility. Electron microscopy revealed the absence of flagellar filaments for MFE01Δhcp1 and MFE01ΔtssC mutants. Transcriptomic analysis showed a reduction in the transcription of class IV flagellar genes in these T6SS mutants. However, transcription of fliA, the gene encoding the class IV flagellar sigma factor, was unaffected. Over-expression of fliA restored the motile and mucoid phenotypes in both MFE01Δhcp1+fliA, and MFE01ΔtssC+fliA and a fliA mutant displayed the same phenotypes as MFE01Δhcp1 and MFE01ΔtssC. Moreover, the FliA anti-sigma factor FlgM was not secreted in the T6SS mutants, and flgM over-expression reduced both motility and mucoidy. This study provides arguments to unravel the crosstalk between T6SS and motility.

9.
Can J Microbiol ; 66(7): 447-454, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32091915

RESUMEN

The geocaulosphere is home to microbes that establish communication between themselves and others that disrupt them. These cell-to-cell communication systems are based on the synthesis and perception of signaling molecules, of which the best known belong to the N-acyl-homoserine lactone (AHL) family. Among indigenous bacteria, certain Gram-positive actinobacteria can sense AHLs produced by soft-rot Gram-negative phytopathogens and can degrade the quorum-sensing AHL signals to impair the expression of virulence factors. We mimicked this interaction by introducing dual-color reporter strains suitable for monitoring both the location of the cells and their quorum-sensing and -quenching activities, in potato tubers. The exchange of AHL signals within the pathogen's cell quorum was clearly detected by the presence of bright green fluorescence instead of blue in a portion of Pectobacterium-tagged cells. This phenomenon in Rhodococcus cells was accompanied by a change from red fluorescence to orange, showing that the disappearance of signaling molecules is due to rhodococcal AHL degradation rather than the inhibition of AHL production. Rhodococci are victorious in this fight for the control of AHL-based communication, as their jamming activity is powerful enough to prevent the onset of disease symptoms.


Asunto(s)
Percepción de Quorum/fisiología , Acil-Butirolactonas/metabolismo , Control Biológico de Vectores , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rhodococcus/genética , Rhodococcus/metabolismo , Rhodococcus/fisiología , Solanum tuberosum/microbiología , Factores de Virulencia/metabolismo
10.
PLoS One ; 14(8): e0221025, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31461454

RESUMEN

Pseudomonas fluorescens is considered to be a typical plant-associated saprophytic bacterium with no pathogenic potential. Indeed, some P. fluorescens strains are well-known rhizobacteria that promote plant growth by direct stimulation, by preventing the deleterious effects of pathogens, or both. Pseudomonas fluorescens C7R12 is a rhizosphere-competent strain that is effective as a biocontrol agent and promotes plant growth and arbuscular mycorrhization. This strain has been studied in detail, but no visual evidence has ever been obtained for extracellular structures potentially involved in its remarkable fitness and biocontrol performances. On transmission electron microscopy of negatively stained C7R12 cells, we observed the following appendages: multiple polar flagella, an inducible putative type three secretion system typical of phytopathogenic Pseudomonas syringae strains and densely bundled fimbria-like appendages forming a broad fractal-like dendritic network around single cells and microcolonies. The deployment of one or other of these elements on the bacterial surface depends on the composition and affinity for the water of the microenvironment. The existence, within this single strain, of machineries known to be involved in motility, chemotaxis, hypersensitive response, cellular adhesion and biofilm formation, may partly explain the strong interactions of strain C7R12 with plants and associated microflora in addition to the type three secretion system previously shown to be implied in mycorrhizae promotion.


Asunto(s)
Desarrollo de la Planta/fisiología , Plantas/microbiología , Pseudomonas fluorescens/crecimiento & desarrollo , Rizosfera , Quimiotaxis/fisiología , Micorrizas/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Pseudomonas fluorescens/metabolismo , Pseudomonas syringae/crecimiento & desarrollo , Pseudomonas syringae/patogenicidad , Microbiología del Suelo , Sistemas de Secreción Tipo III/metabolismo
11.
Front Microbiol ; 10: 786, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31040836

RESUMEN

In many Gram-negative bacteria, virulence, and social behavior are controlled by quorum-sensing (QS) systems based on the synthesis and perception of N-acyl homoserine lactones (AHLs). Quorum-quenching (QQ) is currently used to disrupt bacterial communication, as a biocontrol strategy for plant crop protection. In this context, the Gram-positive bacterium Rhodococcus erythropolis uses a catabolic pathway to control the virulence of soft-rot pathogens by degrading their AHL signals. This QS signal degradation pathway requires the expression of the qsd operon, encoding the key enzyme QsdA, an intracellular lactonase that can hydrolyze a wide range of substrates. QsdR, a TetR-like family regulator, represses the expression of the qsd operon. During AHL degradation, this repression is released by the binding of the γ-butyrolactone ring of the pathogen signaling molecules to QsdR. We show here that a lactone designed to mimic quorum signals, γ-caprolactone, can act as an effector ligand of QsdR, triggering the synthesis of qsd operon-encoded enzymes. Interaction between γ-caprolactone and QsdR was demonstrated indirectly, by quantitative RT-PCR, molecular docking and transcriptional fusion approaches, and directly, in an electrophoretic mobility shift assay. This broad-affinity regulatory system demonstrates that preventive or curative quenching therapies could be triggered artificially and/or managed in a sustainable way by the addition of γ-caprolactone, a compound better known as cheap food additive. The biostimulation of QQ activity could therefore be used to counteract the lack of consistency observed in some large-scale biocontrol assays.

12.
Mol Plant Microbe Interact ; 32(7): 802-812, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30645157

RESUMEN

Confocal laser-scanning microscopy was chosen to observe the colonization and damage caused by the soft rot Pectobacterium atrosepticum and the protection mediated by the biocontrol agent Rhodococcus erythropolis. We developed dual-color reporter strains suited for monitoring quorum-sensing and quorum-quenching activities leading to maceration or biocontrol, respectively. A constitutively expressed cyan or red fluorescent protein served as a cell tag for plant colonization, while an inducible expression reporter system based on the green fluorescent protein gene enabled the simultaneous recording of signaling molecule production, detection, or degradation. The dual-colored pathogen and biocontrol strains were used to coinoculate potato tubers. At cellular quorum, images revealed a strong pectobacterial quorum-sensing activity, especially at the plant cell walls, as well as a concomitant rhodococcal quorum-quenching response, at both the single-cell and microcolony levels. The generated biosensors appear to be promising and complementary tools useful for molecular and cellular studies of bacterial communication and interference.


Asunto(s)
Interacciones Microbianas , Microscopía Confocal , Pectobacterium , Percepción de Quorum , Rhodococcus , Interacciones Microbianas/fisiología , Pectobacterium/citología , Pectobacterium/fisiología , Enfermedades de las Plantas/microbiología , Tubérculos de la Planta/microbiología , Rhodococcus/citología , Rhodococcus/fisiología
13.
Front Microbiol ; 9: 2800, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524404

RESUMEN

The biocontrol agent Rhodococcus erythropolis disrupts virulence of plant and human Gram-negative pathogens by catabolizing their N-acyl-homoserine lactones. This quorum-quenching activity requires the expression of the qsd (quorum-sensing signal degradation) operon, which encodes the lactonase QsdA and the fatty acyl-CoA ligase QsdC, involved in the catabolism of lactone ring and acyl chain moieties of signaling molecules, respectively. Here, we demonstrate the regulation of qsd operon expression by a TetR-like family repressor, QsdR. This repression was lifted by adding the pathogen quorum signal or by deleting the qsdR gene, resulting in enhanced lactone degrading activity. Using interactomic approaches and transcriptional fusion strategy, the qsd operon derepression was elucidated: it is operated by the binding of the common part of signaling molecules, the homoserine lactone ring, to the effector-receiving domain of QsdR, preventing a physical binding of QsdR to the qsd promoter region. To our knowledge, this is the first evidence revealing quorum signals as inducers of the suitable quorum-quenching pathway, confirming this TetR-like protein as a lactone sensor. This regulatory mechanism designates the qsd operon as encoding a global disrupting pathway for degrading a wide range of signal substrates, allowing a broad spectrum anti-virulence activity mediated by the rhodococcal biocontrol agent. Understanding the regulation mechanisms of qsd operon expression led also to the development of biosensors useful to monitor in situ the presence of exogenous signals and quorum-quenching activity.

14.
Front Microbiol ; 8: 1454, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28804481

RESUMEN

Numerous studies in Gram-negative bacteria have focused on the Type VI Secretion Systems (T6SSs), Quorum Sensing (QS), and social behavior, such as in biofilms. These interconnected mechanisms are important for bacterial survival; T6SSs allow bacteria to battle other cells, QS is devoted to the perception of bacterial cell density, and biofilm formation is essentially controlled by QS. Here, we review data concerning T6SS dynamics and T6SS-QS cross-talk that suggest the existence of inter-bacterial communication via T6SSs.

15.
PLoS One ; 12(1): e0170770, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28114423

RESUMEN

Type VI secretion systems (T6SSs) are widespread in Gram-negative bacteria, including Pseudomonas. These macromolecular machineries inject toxins directly into prokaryotic or eukaryotic prey cells. Hcp proteins are structural components of the extracellular part of this machinery. We recently reported that MFE01, an avirulent strain of Pseudomonas fluorescens, possesses at least two hcp genes, hcp1 and hcp2, encoding proteins playing important roles in interbacterial interactions. Indeed, P. fluorescens MFE01 can immobilise and kill diverse bacteria of various origins through the action of the Hcp1 or Hcp2 proteins of the T6SS. We show here that another Hcp protein, Hcp3, is involved in killing prey cells during co-culture on solid medium. Even after the mutation of hcp1, hcp2, or hcp3, MFE01 impaired biofilm formation by MFP05, a P. fluorescens strain isolated from human skin. These mutations did not reduce P. fluorescens MFE01 biofilm formation, but the three Hcp proteins were required for the completion of biofilm maturation. Moreover, a mutant with a disruption of one of the unique core component genes, MFE01ΔtssC, was unable to produce its own biofilm or inhibit MFP05 biofilm formation. Finally, MFE01 did not produce detectable N-acyl-homoserine lactones for quorum sensing, a phenomenon reported for many other P. fluorescens strains. Our results suggest a role for the T6SS in communication between bacterial cells, in this strain, under biofilm conditions.


Asunto(s)
Biopelículas , Pseudomonas fluorescens/fisiología , Humanos , Mutación , Pseudomonas fluorescens/genética , Piel/microbiología
16.
BMC Microbiol ; 15: 72, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25886496

RESUMEN

BACKGROUND: Pseudomonas fluorescens strain MFE01 secretes in abundance two Hcp proteins (haemolysin co-regulated proteins) Hcp1 and Hcp2, characteristic of a functional type 6 secretion system. Phenotypic studies have shown that MFE01 has antibacterial activity against a wide range of competitor bacteria, including rhizobacteria and clinically relevant bacteria. Mutagenesis of the hcp2 gene abolishes or reduces, depending on the target strain, MFE01 antibacterial activity. Hcp1, encoded by hcp1, may also be involved in bacterial competition. We therefore assessed the contribution of Hcp1 to competition of P. fluorescens MFE01 with other bacteria, by studying MFE01 mutants in various competitive conditions. RESULTS: Mutation of hcp1 had pleiotropic effects on the MFE01 phenotype. It affected mucoidy of the strain and its motility and was associated with the loss of flagella, which were restored by introduction of plasmid expressing hcp1. The hcp1 mutation had no effect on bacterial competition during incubation in solid medium. MFE01 was able to sequester another P. fluorescens strain, MFN1032, under swimming conditions. The hcp2 mutant but not the hcp1 mutant conserved this ability. In competition assays on swarming medium, MFE01 impaired MFN1032 swarming and displayed killing activity. The hcp2 mutant, but not the hcp1 mutant, was able to reduce MFN1032 swarming. The hcp1 and hcp2 mutations each abolished killing activity in these conditions. CONCLUSION: Our findings implicate type 6 secretion of Hcp1 in mucoidy and motility of MFE01. Our study is the first to establish a link between a type 6 secretion system and flagellin and mucoidy. Hcp1 also appears to contribute to limiting the motility of prey cells to facilitate killing mediated by Hcp2. Inhibition of motility associated with an Hcp protein has never been described. With this work, we illustrate the importance and versatility of type 6 secretion systems in bacterial adaptation and fitness.


Asunto(s)
Antibiosis , Proteínas Bacterianas/metabolismo , Locomoción , Polisacáridos Bacterianos/metabolismo , Pseudomonas fluorescens/fisiología , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/genética , Eliminación de Gen , Prueba de Complementación Genética , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo
17.
Appl Environ Microbiol ; 81(7): 2579-90, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25636837

RESUMEN

Pseudomonas fluorescens is commonly considered a saprophytic rhizobacterium devoid of pathogenic potential. Nevertheless, the recurrent isolation of strains from clinical human cases could indicate the emergence of novel strains originating from the rhizosphere reservoir, which could be particularly resistant to the immune system and clinical treatment. The importance of type three secretion systems (T3SSs) in the related Pseudomonas aeruginosa nosocomial species and the occurrence of this secretion system in plant-associated P. fluorescens raise the question of whether clinical isolates may also harbor T3SSs. In this study, isolates associated with clinical infections and identified in hospitals as belonging to P. fluorescens were compared with fluorescent pseudomonads harboring T3SSs isolated from plants. Bacterial isolates were tested for (i) their genetic relationships based on their 16S rRNA phylogeny, (ii) the presence of T3SS genes by PCR, and (iii) their infectious potential on animals and plants under environmental or physiological temperature conditions. Two groups of bacteria were delineated among the clinical isolates. The first group encompassed thermotolerant (41°C) isolates from patients suffering from blood infections; these isolates were finally found to not belong to P. fluorescens but were closely related and harbored highly conserved T3SS genes belonging to the Ysc-T3SS family, like the T3SSs from P. aeruginosa. The second group encompassed isolates from patients suffering from cystic fibrosis; these isolates belonged to P. fluorescens and harbored T3SS genes belonging to the Hrp1-T3SS family found commonly in plant-associated P. fluorescens.


Asunto(s)
Sistemas de Secreción Bacterianos/genética , Plantas/microbiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas fluorescens/genética , Factores de Virulencia/genética , Bacteriemia/microbiología , Análisis por Conglomerados , Fibrosis Quística/complicaciones , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Dictyostelium/crecimiento & desarrollo , Dictyostelium/microbiología , Genotipo , Humanos , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas fluorescens/clasificación , Pseudomonas fluorescens/aislamiento & purificación , ARN Ribosómico 16S/genética , Infecciones del Sistema Respiratorio/microbiología , Análisis de Secuencia de ADN , Homología de Secuencia , Temperatura
18.
PLoS One ; 9(2): e89411, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24551247

RESUMEN

Protein secretion systems are crucial mediators of bacterial interactions with other organisms. Among them, the type VI secretion system (T6SS) is widespread in Gram-negative bacteria and appears to inject toxins into competitor bacteria and/or eukaryotic cells. Major human pathogens, such as Vibrio cholerae, Burkholderia and Pseudomonas aeruginosa, express T6SSs. Bacteria prevent self-intoxication by their own T6SS toxins by producing immunity proteins, which interact with the cognate toxins. We describe here an environmental P. fluorescens strain, MFE01, displaying an uncommon oversecretion of Hcp (hemolysin-coregulated protein) and VgrG (valine-glycine repeat protein G) into the culture medium. These proteins are characteristic components of a functional T6SS. The aim of this study was to attribute a role to this energy-consuming overexpression of the T6SS. The genome of MFE01 contains at least two hcp genes (hcp1 and hcp2), suggesting that there may be two putative T6SS clusters. Phenotypic studies have shown that MFE01 is avirulent against various eukaryotic cell models (amebas, plant or animal cell models), but has antibacterial activity against a wide range of competitor bacteria, including rhizobacteria and clinical bacteria. Depending on the prey cell, mutagenesis of the hcp2 gene in MFE01 abolishes or reduces this antibacterial killing activity. Moreover, the introduction of T6SS immunity proteins from S. marcescens, which is not killed by MFE01, protects E. coli against MFE01 killing. These findings suggest that the protein encoded by hcp2 is involved in the killing activity of MFE01 mediated by effectors of the T6SS targeting the peptidoglycan of Gram-negative bacteria. Our results indicate that MFE01 can protect potato tubers against Pectobacterium atrosepticum, which causes tuber soft rot. Pseudomonas fluorescens is often described as a major PGPR (plant growth-promoting rhizobacterium), and our results suggest that there may be a connection between the T6SS and the PGPR properties of this bacterium.


Asunto(s)
Sistemas de Secreción Bacterianos , Interacciones Microbianas , Pseudomonas fluorescens/metabolismo , Animales , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Escherichia coli/fisiología , Genes Bacterianos , Humanos , Inmunidad , Viabilidad Microbiana , Mutación/genética , Pectobacterium/fisiología , Plásmidos/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/crecimiento & desarrollo , Pseudomonas fluorescens/patogenicidad , Serratia marcescens/fisiología , Virulencia/genética
19.
Res Microbiol ; 164(7): 779-87, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23587635

RESUMEN

Many bacterial genes are in operons and the process whereby operons are formed is therefore fundamental. To help elucidate this process, we propose in the Scribbling Pad hypothesis that bacteria have been constantly using plasmids for genetic experimentation and, in particular, for the construction of operons. This hypothesis simultaneously solves the problems of the creation of operons and the way operons are propagated. We cite results in the literature to support the hypothesis and make experimental predictions to test it.


Asunto(s)
Bacterias/genética , Operón , Plásmidos/genética , Modelos Genéticos
20.
BMC Microbiol ; 12: 223, 2012 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-23020706

RESUMEN

BACKGROUND: Pseudomonas fluorescens biovar I MFN1032 is a clinical isolate able to grow at 37°C. This strain displays secretion-mediated hemolytic activity involving phospholipase C and cyclolipopeptides, and a cell-associated hemolytic activity distinct from the secreted hemolytic activity. Cell-associated hemolysis is independent of biosurfactant production and remains in a gacA mutant. Disruption of the hrpU-like operon (the basal part of type III secretion system from rhizospheric strains) suppresses this activity. We hypothesized that this phenotype could reflect evolution of an ancestral mechanism involved in the survival of this species in its natural niche. In this study, we evaluated the hrpU-like operon's contribution to other virulence mechanisms using a panel of Pseudomonas strains from various sources. RESULTS: We found that MFN1032 inhibited the growth of the amoebae Dictyostelium discoideum and that this inhibition involved the hrpU-like operon and was absent in a gacA mutant. MFN1032 was capable of causing macrophage lysis, if the hrpU-like operon was intact, and this cytotoxicity remained in a gacA mutant. Cell-associated hemolytic activity and macrophage necrosis were found in other P. fluorescens clinical isolates, but not in biocontrol P. fluorescens strains harbouring hrpU-like operon. The growth of Dictyostelium discoideum was inhibited to a different extent by P. fluorescens strains without correlation between this inhibition and hrpU-like operon sequences. CONCLUSIONS: In P. fluorescens MFN1032, the basal part of type III secretion system plays a role in D. discoideum growth inhibition and macrophage necrosis. The inhibition of D. discoideum growth is dependent on the GacS/GacA system, while cell-associated hemolytic activity and macrophage lysis are not. Virulence against eukaryotic cells based on the hrpU-like operon may be more than just a stochastic evolution of a conserved system dedicated to survival in competition with natural predators such as amoebae. It may also mean that there are some important modifications of other type III secretion system components, which remain unknown. Cell-associated hemolysis might be a good indicator of the virulence of Pseudomonas fluorescens strain.


Asunto(s)
Sistemas de Secreción Bacterianos , Dictyostelium/microbiología , Macrófagos/microbiología , Pseudomonas fluorescens/patogenicidad , Factores de Virulencia/metabolismo , Animales , Muerte Celular , Línea Celular , Dictyostelium/efectos de los fármacos , Dictyostelium/crecimiento & desarrollo , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Ratones , Operón , Pseudomonas fluorescens/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...