Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Insect Mol Biol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818901

RESUMEN

Arylalkylamine N-acetyltransferase (aaNAT) is a crucial enzyme that catalyses the transfer of acetyl groups from acetyl coenzyme A to arylalkylamines and arylamines. Evolutionary studies have identified a distinct class of aaNATs specific to mosquitoes, yet their functions remain elusive. This study focuses on Ae-aaNAT7, a mosquito-unique gene in Aedes aegypti (Diptera:Culicidae), to explore its functionality. Temporal and spatial expression analysis of Ae-aaNAT7 mRNA revealed high expression during embryonic development and in first-instar larvae, with notable expression in the limbs of adult mosquitoes based on tissue expression profiling. By further employing CRISPR/Cas9 technology for loss-of-function studies, our investigation revealed a reduction in the area of white spotting in the limbs of Ae-aaNAT7 mutant adult mosquitoes. Further investigation revealed a significant decrease in the fecundity and hatchability of the mutants. Dissection of the ovaries from Ae-aaNAT7 heterozygous mutants showed a noticeable reduction in the oocyte area compared with wild type. Dissection of the exochorion of the eggs from Ae-aaNAT7 homozygous mutants consistently revealed a striking absence of mature embryos. In addition, RNA interference experiments targeting Ae-aaNAT7 in males resulted in a reduction in fecundity, but no effect on hatchability was observed. These collective insights underscore the substantial impact of Ae-aaNAT7 on reproduction and its pivotal contribution to adult limb pigmentation in Ae. aegypti. These revelations offer insights pivotal for the strategic design of future insecticide targets.

2.
Adv Protein Chem Struct Biol ; 134: 211-223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36858736

RESUMEN

Arylalkylamine N-acetyltransferase (aaNAT) catalyzes the transacetylation of acetyl coenzyme A to arylamines and arylalkylamines. Based on three-dimensional structural information, aaNAT belongs to the GCN5-related N-acetyltransferases superfamily with a conserved acetyl-CoA binding domain (Dyda et al., 2000). By comparison of sequence similarity, aaNAT is usually divided into vertebrate aaNAT (VT-aaNAT) and non-vertebrate aaNAT (NV-aaNAT) (Cazaméa-Catalan et al., 2014). Insects have evolved multiple aaNATs in comparison to mammals, thus more diverse functions are also reflected in insects. This chapter will summarize previous studies on the function, regulation, structure and evolution of aaNAT, and provide insight into future pest management.


Asunto(s)
Aminas , N-Acetiltransferasa de Arilalquilamina , Animales , Sistemas de Liberación de Medicamentos
3.
Insect Sci ; 30(2): 569-581, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35922881

RESUMEN

Arylalkylamine N-acetyltransferase (aaNAT), considered a potential new insecticide target, catalyzes the acetylation of arylalkylamine substrates such as serotonin and dopamine and, hence, mediates diverse functions in insects. However, the origin of insect aaNATs (iaaNATs) and the evolutionary process that generates multiple aaNATs in mosquitoes remain largely unknown. Here, we have analyzed the genomes of 33 species to explore and expand our understanding of the molecular evolution of this gene family in detail. We show that aaNAT orthologs are present in Bacteria, Cephalochordata, Chondrichthyes, Cnidaria, Crustacea, Mammalia, Placozoa, and Teleoste, as well as those from a number of insects, but are absent in some species of Annelida, Echinozoa, and Mollusca as well as Arachnida. Particularly, more than 10 aaNATs were detected in the Culicinae subfamily of mosquitoes. Molecular evolutionary analysis of aaNAT/aaNAT-like genes in mosquitoes reveals that tandem duplication events led to gene expansion in the Culicinae subfamily of mosquitoes more than 190 million years ago. Further selection analysis demonstrates that mosquito aaNATs evolved under strongly positive pressures that generated functional diversity following gene duplication events. Overall, this study may provide novel insights into the molecular evolution of the aaNAT family in mosquitoes.


Asunto(s)
Culicidae , Animales , Secuencia de Aminoácidos , Culicidae/genética , N-Acetiltransferasa de Arilalquilamina/metabolismo , Evolución Molecular , Genómica
4.
Br J Pharmacol ; 179(13): 3306-3324, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35124797

RESUMEN

Peptides play a key role in controlling many physiological and neurobiological pathways. Many bioactive peptides require a C-terminal α-amide for full activity. The bifunctional enzyme catalysing α-amidation, peptidylglycine α-amidating monooxygenase (PAM), is the sole enzyme responsible for amidated peptide biosynthesis, from Chlamydomonas reinhardtii to Homo sapiens. Many neuronal and endocrine functions are dependent upon amidated peptides; additional amidated peptides are growth promoters in tumours. The amidation reaction occurs in two steps, glycine α-hydroxylation followed by dealkylation to generate the α-amide product. Currently, most potentially useful inhibitors target the first reaction, which is rate-limiting. PAM is a membrane-bound enzyme that visits the cell surface during peptide secretion. PAM is then used again in the biosynthetic pathway, meaning that cell-impermeable inhibitors or inactivators could have therapeutic value for the treatment of cancer or psychiatric abnormalities. To date, inhibitor design has not fully exploited the structures and mechanistic details of PAM.


Asunto(s)
Oxigenasas de Función Mixta , Amidas , Animales , Biomarcadores/química , Biomarcadores/metabolismo , Humanos , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Terapia Molecular Dirigida , Complejos Multienzimáticos , Péptidos/química
5.
Front Mol Biosci ; 9: 1122151, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36703916
6.
Molecules ; 26(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925418

RESUMEN

Fatty acid amides are a diverse family of underappreciated, biologically occurring lipids. Herein, the methods for the chemical synthesis and subsequent characterization of specific members of the fatty acid amide family are described. The synthetically prepared fatty acid amides and those obtained commercially are used as standards for the characterization and quantification of the fatty acid amides produced by biological systems, a fatty acid amidome. The fatty acid amidomes from mouse N18TG2 cells, sheep choroid plexus cells, Drosophila melanogaster, Bombyx mori, Apis mellifera, and Tribolium castaneum are presented.


Asunto(s)
Amidas/química , Ácidos Grasos/química , Lípidos/química , Amidas/síntesis química , Amidas/metabolismo , Animales , Abejas/química , Bombyx/química , Línea Celular , Drosophila melanogaster/química , Ácidos Grasos/síntesis química , Ácidos Grasos/metabolismo , Lípidos/genética , Ratones , Ovinos , Tribolium/química
7.
Front Mol Biosci ; 8: 801749, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35047560

RESUMEN

The fatty acid amides are a family of lipids composed of two chemical moieties, a fatty acid and a biogenic amine linked together in an amide bond. This lipid family is structurally related to the endocannabinoid anandamide (N-arachidonoylethanolamine) and, thus, is frequently referred to as a family of endocannabinoid-related lipids. The fatty acid amide family is divided into different classes based on the conjugate amine; anandamide being a member of the N-acylethanolamine class (NAE). Another class within the fatty acid amide family is the N-acyl amino acids (NA-AAs). The focus of this review is a sub-class of the NA-AAs, the N-acyl aromatic amino acids (NA-ArAAs). The NA-ArAAs are not broadly recognized, even by those interested in the endocannabinoids and endocannabinoid-related lipids. Herein, the NA-ArAAs that have been identified from a biological source will be highlighted and pathways for their biosynthesis, degradation, enzymatic modification, and transport will be presented. Also, information about the cellular functions of the NA-ArAAs will be placed in context with the data regarding the identification and metabolism of these N-acylated amino acids. A review of the current state-of-knowledge about the NA-ArAAs is to stimulate future research about this underappreciated sub-class of the fatty acid amide family.

8.
Protein Expr Purif ; 175: 105695, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32681959

RESUMEN

The assumption that structural or sequential homology between enzymes implies functional homology is a common misconception. Through in-depth structural and kinetic analysis, we are now beginning to understand the minute differences in primary structure that can alter the function of an enzyme completely. Alternative splicing is one method for which the activity of an enzyme can be controlled, simply by altering its length. Arylalkylamine N-acetyltransferase A (AANATA) in D. melanogaster, which catalyzes the N-acetylation of biogenic amines, has multiple splicoforms - alternatively spliced enzyme isoforms - with differing tissue distribution. As demonstrated here, AANAT1 from Tribolium castaneum is another such enzyme with multiple splicoforms. A screening assay was developed and utilized to determine that, despite only a 35 amino acid truncation, the shortened form of TcAANAT1 is a more active form of the enzyme. This implies regulation of enzyme metabolic activity via alternative splicing.


Asunto(s)
Empalme Alternativo , N-Acetiltransferasa de Arilalquilamina , Proteínas de Insectos , Tribolium , Animales , N-Acetiltransferasa de Arilalquilamina/biosíntesis , N-Acetiltransferasa de Arilalquilamina/genética , Drosophila melanogaster , Proteínas de Insectos/biosíntesis , Proteínas de Insectos/genética , Isoenzimas/biosíntesis , Isoenzimas/genética , Tribolium/enzimología , Tribolium/genética
9.
ACS Chem Biol ; 15(2): 513-523, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31967772

RESUMEN

The growing issue of insecticide resistance has meant the identification of novel insecticide targets has never been more important. Arylalkylamine N-acyltransferases (AANATs) have been suggested as a potential new target. These promiscuous enzymes are involved in the N-acylation of biogenic amines to form N-acylamides. In insects, this process is a key step in melanism, hardening of the cuticle, removal of biogenic amines, and in the biosynthesis of fatty acid amides. The unique nature of each AANAT isoform characterized indicates each organism accommodates an assembly of discrete AANATs relatively exclusive to that organism. This implies a high potential for selectivity in insecticide design, while also maintaining polypharmacology. Presented here is a thorough kinetic and structural analysis of AANAT found in one of the most common secondary pests of all plant commodities in the world, Tribolium castaneum. The enzyme, named TcAANAT0, catalyzes the formation of short-chain N-acylarylalkylamines, with short-chain acyl-CoAs (C2-C10), benzoyl-CoA, and succinyl-CoA functioning in the role of acyl donor. Recombinant TcAANAT0 was expressed and purified from E. coli and was used to investigate the kinetic and chemical mechanism of catalysis. The kinetic mechanism is an ordered sequential mechanism with the acyl-CoA binding first. pH-rate profiles and site-directed mutagenesis studies identified amino acids critical to catalysis, providing insights about the chemical mechanism of TcAANAT0. A crystal structure was obtained for TcAANAT0 bound to acetyl-CoA, revealing valuable information about its active site. This combination of kinetic analysis and crystallography alongside mutagenesis and sequence analysis shines light on some approaches possible for targeting TcAANAT0 and other AANATs for novel insecticide design.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/química , Proteínas de Insectos/química , Tribolium/enzimología , Acetilcoenzima A/metabolismo , Animales , N-Acetiltransferasa de Arilalquilamina/genética , N-Acetiltransferasa de Arilalquilamina/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Mutación , Fenetilaminas/metabolismo , Unión Proteica , Triptaminas/metabolismo
10.
Curr Top Med Chem ; 19(25): 2318-2333, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31629395

RESUMEN

The enzyme L-DOPA decarboxylase (DDC), also called aromatic-L-amino-acid decarboxylase, catalyzes the biosynthesis of dopamine, serotonin, and trace amines. Its deficiency or perturbations in expression result in severe motor dysfunction or a range of neurodegenerative and psychiatric disorders. A DDC substrate, L-DOPA, combined with an inhibitor of the enzyme is still the most effective treatment for symptoms of Parkinson's disease. In this review, we provide an update regarding the structures, functions, and inhibitors of DDC, particularly with regards to the treatment of Parkinson's disease. This information will provide insight into the pharmacological treatment of Parkinson's disease.


Asunto(s)
Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Inhibidores Enzimáticos/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Fármacos Neuroprotectores/química , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/metabolismo
11.
Arch Insect Biochem Physiol ; 102(4): e21608, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31385627

RESUMEN

Drosophila melanogaster produces fatty acid amides, and thus, provides a model to unravel the pathways for their biosynthesis. We previously demonstrated that arylalkylamine N-acetyltransferase-like 2 (AANATL2) from D. melanogaster will catalyze the formation of long-chain N-acylserotonins and N-acyldopamines in vitro. Generating silencing RNA via the UAS/GAL4 bipartite approach for targeted gene expression effectively decreased the endogenous levels of the AANATL2 transcripts in D. melanogaster, as shown by reverse transcription quantitative polymerase chain reaction. Consistent with these data, western blot analysis of the offspring of the AANATL2 knockdown flies using an anti-AANATL2 antibody revealed a significant reduction in the expression of the AANATL2 protein. Reduced expression of AANATL2 decreased the cellular levels of N-palmitoyldopamine (PALDA), providing strong evidence that AANATL2 is responsible for the biosynthesis of PALDA in vivo. This is the first time that the expression of an AANAT has been reduced in D. melanogaster to link one of these enzymes to the in vivo production of an N-acylarylalkylamide.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Aciltransferasas/genética , Animales , Dopamina/análogos & derivados , Dopamina/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/metabolismo , Silenciador del Gen
12.
Alzheimers Dement ; 15(6): 817-827, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31078433

RESUMEN

INTRODUCTION: A critical and as-yet unmet need in Alzheimer's disease (AD) is the discovery of peripheral small molecule biomarkers. Given that brain pathology precedes clinical symptom onset, we set out to test whether metabolites in blood associated with pathology as indexed by cerebrospinal fluid (CSF) AD biomarkers. METHODS: This study analyzed 593 plasma samples selected from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery study, of individuals who were cognitively healthy (n = 242), had mild cognitive impairment (n = 236), or had AD-type dementia (n = 115). Logistic regressions were carried out between plasma metabolites (n = 883) and CSF markers, magnetic resonance imaging, cognition, and clinical diagnosis. RESULTS: Eight metabolites were associated with amyloid ß and one with t-tau in CSF, these were primary fatty acid amides (PFAMs), lipokines, and amino acids. From these, PFAMs, glutamate, and aspartate also associated with hippocampal volume and memory. DISCUSSION: PFAMs have been found increased and associated with amyloid ß burden in CSF and clinical measures.


Asunto(s)
Péptidos beta-Amiloides , Amiloidosis/sangre , Biomarcadores , Hipocampo , Memoria/fisiología , Metabolómica , Anciano , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/líquido cefalorraquídeo , Amiloidosis/líquido cefalorraquídeo , Amiloidosis/metabolismo , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Encéfalo/patología , Disfunción Cognitiva/diagnóstico , Estudios de Cohortes , Femenino , Hipocampo/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Proteínas tau/sangre , Proteínas tau/líquido cefalorraquídeo
13.
Arch Biochem Biophys ; 661: 107-116, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30452894

RESUMEN

The arylalkylamine N-acyltransferases (AANATs) are enzymes that catalyze the acyl-CoA-dependent formation of N-acylarylalkylamides: acyl-CoA + arylalkylamine → N-acylarylalkylamides + CoA-SH. Herein, we describe our study of a previously uncharacterized AANAT from Bombyx mori: Bm-iAANAT3. Bm-iAANAT3 catalyzes the direct formation of N-acylarylalkylamides and accepts a broad range of short-chain acyl-CoA thioesters and amines as substrates. Acyl-CoA thioesters possessing an acyl chain length >10 carbon atoms are not substrates for Bm-iAANAT3. We report that Bm-iAANAT3 is a "versatile generalist", most likely, functioning in amine acetylation - a reaction in amine inactivation/excretion, cuticle sclerotization, and melanism. We propose a kinetic and chemical mechanism for Bm-iAANAT3 that is consistent with our steady-state kinetic analysis, dead-end inhibition studies, determination of the pH-rate profiles, and site-directed mutagenesis of a catalytically important amino acid in Bm-iAANAT3. These mechanistic studies of Bm-iAANAT3 will foster the development of novel compounds targeted against this enzyme and other insect AANATs for the control of insect pests.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/química , Bombyx , Expresión Génica , Proteínas de Insectos/química , Acetilación , Animales , N-Acetiltransferasa de Arilalquilamina/biosíntesis , N-Acetiltransferasa de Arilalquilamina/genética , Bombyx/enzimología , Bombyx/genética , Proteínas de Insectos/biosíntesis , Proteínas de Insectos/genética , Cinética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidad por Sustrato
14.
Front Mol Biosci ; 5: 66, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30094237

RESUMEN

Arylalkylamine N-acyltransferases (AANATs) catalyze the formation of an N-acylamide from an acyl-CoA thioester and an amine. One well known example is the production of N-acetylserotonin from acetyl-CoA and serotonin, a reaction in the melatonin biosynthetic pathway from tryptophan. AANATs have been identified from a variety of vertebrates and invertebrates. Considerable efforts have been devoted to the mammalian AANAT because a cell-permeable inhibitor specifically targeted against this enzyme could prove useful to treat diseases related to dysfunction in melatonin production. Insects are an interesting model for the study of AANATs because more than one isoform is typically expressed by a specific insect and the different insect AANATs (iAANATs) serve different roles in the insect cell. In contrast, mammals express only one AANAT. The major role of iAANATs seem to be in the production of N-acetyldopamine, a reaction important in the tanning and sclerotization of the cuticle. Metabolites identified in insects including N-acetylserotonin and long-chain N-fatty acyl derivatives of dopamine, histidine, phenylalanine, serotonin, tyrosine, and tryptophan are likely produced by an iAANAT. In vitro studies of specific iAANATs are consistent with this hypothesis. In this review, we highlight the current metabolomic knowledge of the N-acylated aromatic amino acids and N-acylated derivatives of the aromatic amino acids, the current mechanistic understanding of the iAANATs, and explore the possibility that iAANATs serve as insect "rhymezymes" regulating photoperiodism and other rhythmic processes in insects.

15.
Artículo en Inglés | MEDLINE | ID: mdl-30103920

RESUMEN

The purpose of this research is to unravel the substrate specificity and kinetic properties of an insect arylalkylamine N-acyltransferase from Bombyx mori (Bm-iAANAT) and to determine if this enzyme will catalyze the formation of long chain N-acylarylalkylamides in vitro. However, the determination of substrates and products for Bm-iAANAT in vitro is no guarantee that these same molecules are substrates and products for the enzyme in the organism. Therefore, RT-PCR was performed to detect the Bm-iAANAT transcripts and liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) analysis was performed on purified lipid extracts from B. mori larvae (fourth instar, Bmi4) to determine if long chain fatty acid amides are produced in B. mori. Ultimately, we found that recombinant Bm-iAANAT will utilize long-chain acyl-CoA thioesters as substrates and identified Bm-iAANAT transcripts and long-chain fatty acid amides in Bmi4. Together, these data show Bm-iAANAT will catalyze the formation of long-chain N-acylarylalkylamides in vitro and provide evidence demonstrating that Bm-iAANAT has a role in fatty acid amide biosynthesis in B. mori, as well.


Asunto(s)
Amidas/análisis , N-Acetiltransferasa de Arilalquilamina/genética , Bombyx/metabolismo , Ácidos Grasos/análisis , Amidas/metabolismo , Animales , N-Acetiltransferasa de Arilalquilamina/metabolismo , Bombyx/genética , Cromatografía Liquida , Ácidos Grasos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Lipogénesis , Espectrometría de Masas , Especificidad por Sustrato
16.
Artículo en Inglés | MEDLINE | ID: mdl-29552676

RESUMEN

Crop protection against destructive pests has been at the forefront of recent agricultural advancements. Rapid adaptive evolution has led to insects becoming immune to the chemicals employed to quell their damage. Insecticide resistance is a serious problem that negatively impacts food production, food storage, human health, and the environment. To make matters more complicated are the strict regulations in place on insecticide development, driven by rising public concern relating to the harmful effects these chemicals have on the environment and on society. A key component to solving the problem of insecticide resistance, while keeping public welfare in mind, is the identification of novel insect-specific protein targets. One unexplored target for the development of new targeted insecticides are the insect arylalkylamine N-acetyltransferases (iAANATs). This group of enzymes, shown to be intrinsic in the development of the insect cuticle, is an untapped well of potential for target-specific inhibition, while offering enough variety to ensure protection for non-target enzymes. In this review, we highlight kinetic, genetic and bioinformatic data showing that the iAANATs are intriguing insecticide targets that should be specific only for particular insect pests. Such a pest-specific insecticide would minimize environmental harm by eliminating such non-discriminate attacks which have made insecticides such a highly regulated industry, and would have negligible toxicity to humans and other mammals.

17.
Artículo en Inglés | MEDLINE | ID: mdl-29552677

RESUMEN

The non-mevalonate dependent (NMVA) pathway for the biosynthesis of isopentenyl pyrophosphate and dimethylallyl pyrophosphate is the sole source of these terpenoids for the production of isoprenoids in the apicomplexan parasites, in many eubacteria, and in plants. The absence of this pathway in higher organisms has opened a new platform for the development of novel antibiotics and anti-malarials. The enzyme catalyzing the first step of the NMVA pathway is 1-deoxy-D-xylulose-5-phosphate synthase (DXPS). DXPS catalyzes the thiamine pyrophosphate- and Mg (II)-dependent conjugation of pyruvate and D-glyceraldehyde-3-phosphate to form 1-deoxy-D-xylulose-5-phosphate and CO2. The kinetic mechanism of DXPS from Deinococcus radiodurans most consistent with our data is random sequential as shown using a combination of kinetic analysis and product and dead-end inhibition studies. The role of active site amino acids, identified by sequence alignment to other DXPS proteins, was probed by constructing and analyzing the catalytic efficacy of a set of targeted site-directed mutants.

18.
Trends Res ; 1(4)2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30775690

RESUMEN

Fatty acid amides represent a diverse and underappreciated family of lipids found in vertebrates and invertebrates. The most recognized, most studied, and best understood members of the fatty acid amide family are N-arachidonoylethanolamine (anandamide) and oleamide. Over 70 other fatty acid amides have been identified from biological systems and these non-anandamide and non-oleamide fatty acid amides are not well understood: their cellular functions, transport, biosynthesis, and degradation are, at best, partially elucidated. Most of the fatty acid amides are "orphan" ligands for "orphan" or unknown receptors. Interest in the fatty acid amides will wane without a more complete understanding of their function in vivo and most of these lipids will be mentioned in a few sentences in reviews on ananamide and/or olemide. In this commentary, we suggest that one strategy to dramatically increase our understanding of any member of the fatty acid amide family is the design, synthesis, and proper use of binding-based profiling probes (BBPPs) based on the structure of a specific fatty acid amide. A BBPP is an analog of a fatty acid amide that enables the controlled covalent attachment of the probe to a fatty acid amide-binding protein and, also, possesses a chemical moiety that will allow the purification and/or detection of the BBPP-labeled proteins. The identification of the proteins that specifically bind a fatty acid amide will foster a better understanding of the function, transport, and metabolism of a fatty acid amide.

19.
Sci Rep ; 7(1): 13432, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044148

RESUMEN

Agmatine N-acetyltransferase (AgmNAT) catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine. Herein, we provide evidence that Drosophila melanogaster AgmNAT (CG15766) catalyzes the formation of N-acetylagmatine using an ordered sequential mechanism; acetyl-CoA binds prior to agmatine to generate an AgmNAT•acetyl-CoA•agmatine ternary complex prior to catalysis. Additionally, we solved a crystal structure for the apo form of AgmNAT with an atomic resolution of 2.3 Å, which points towards specific amino acids that may function in catalysis or active site formation. Using the crystal structure, primary sequence alignment, pH-activity profiles, and site-directed mutagenesis, we evaluated a series of active site amino acids in order to assign their functional roles in AgmNAT. More specifically, pH-activity profiles identified at least one catalytically important, ionizable group with an apparent pKa of ~7.5, which corresponds to the general base in catalysis, Glu-34. Moreover, these data led to a proposed chemical mechanism, which is consistent with the structure and our biochemical analysis of AgmNAT.


Asunto(s)
Acetiltransferasas/química , Agmatina/análogos & derivados , Agmatina/metabolismo , Proteínas de Drosophila/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Sustitución de Aminoácidos , Animales , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster
20.
PLoS One ; 12(5): e0177270, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28486510

RESUMEN

The transfer of an acetyl group from acetyl-CoA to an acceptor amine is a ubiquitous biochemical transformation catalyzed by Gcn5-related N-acetyltransferases (GNATs). Although it is established that the reaction proceeds through a sequential ordered mechanism, the role of the acetyl group in driving the ordered formation of binary and ternary complexes remains elusive. Herein, we show that CoA and acetyl-CoA alter the conformation of the substrate binding site of an arylalkylamine N-acetyltransferase (AANAT) to facilitate interaction with acceptor substrates. However, it is the presence of the acetyl group within the catalytic funnel that triggers high affinity binding. Acetyl group occupancy is relayed through a conserved salt bridge between the P-loop and the acceptor binding site, and is manifested as differential dynamics in the CoA and acetyl-CoA-bound states. The capacity of the acetyl group carried by an acceptor to promote its tight binding even in the absence of CoA, but also its mutually exclusive position to the acetyl group of acetyl-CoA underscore its importance in coordinating the progression of the catalytic cycle.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/metabolismo , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...