Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
ACS Infect Dis ; 9(6): 1267-1282, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37167453

RESUMEN

Acetylation signaling pathways in trypanosomatids, a group of early branching organisms, are poorly understood due to highly divergent protein sequences. To overcome this challenge, we used interactomic datasets and AlphaFold2 (AF2)-multimer to predict direct interactions and validated them using yeast two and three-hybrid assays. We focused on MORF4 related gene (MRG) domain-containing proteins and their interactions, typically found in histone acetyltransferase/deacetylase complexes. The results identified a structurally conserved complex, TcTINTIN, which is orthologous to human and yeast trimer independent of NuA4 for transcription interaction (TINTIN) complexes; and another trimeric complex involving an MRG domain, only seen in trypanosomatids. The identification of a key component of TcTINTIN, TcMRGBP, would not have been possible through traditional homology-based methods. We also conducted molecular dynamics simulations, revealing a conformational change that potentially affects its affinity for TcBDF6. The study also revealed a novel way in which an MRG domain participates in simultaneous interactions with two MRG binding proteins binding two different surfaces, a phenomenon not previously reported. Overall, this study demonstrates the potential of using AF2-processed interactomic datasets to identify protein complexes in deeply branched eukaryotes, which can be challenging to study based on sequence similarity. The findings provide new insights into the acetylation signaling pathways in trypanosomatids, specifically highlighting the importance of MRG domain-containing proteins in forming complexes, which may have important implications for understanding the biology of these organisms and developing new therapeutics. On the other hand, our validation of AF2 models for the determination of multiprotein complexes illuminates the power of using such artificial intelligence-derived tools in the future development of biology.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Inteligencia Artificial , Furilfuramida , Núcleo Celular/metabolismo , Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Histona Acetiltransferasas/genética
2.
ACS Infect Dis, v. 9, 1267–1282, mai. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4911

RESUMEN

Acetylation signaling pathways in trypanosomatids, a group of early branching organisms, are poorly understood due to highly divergent protein sequences. To overcome this challenge, we used interactomic datasets and AlphaFold2 (AF2)-multimer to predict direct interactions and validated them using yeast two and three-hybrid assays. We focused on MORF4 related gene (MRG) domain-containing proteins and their interactions, typically found in histone acetyltransferase/deacetylase complexes. The results identified a structurally conserved complex, TcTINTIN, which is orthologous to human and yeast trimer independent of NuA4 for transcription interaction (TINTIN) complexes; and another trimeric complex involving an MRG domain, only seen in trypanosomatids. The identification of a key component of TcTINTIN, TcMRGBP, would not have been possible through traditional homology-based methods. We also conducted molecular dynamics simulations, revealing a conformational change that potentially affects its affinity for TcBDF6. The study also revealed a novel way in which an MRG domain participates in simultaneous interactions with two MRG binding proteins binding two different surfaces, a phenomenon not previously reported. Overall, this study demonstrates the potential of using AF2-processed interactomic datasets to identify protein complexes in deeply branched eukaryotes, which can be challenging to study based on sequence similarity. The findings provide new insights into the acetylation signaling pathways in trypanosomatids, specifically highlighting the importance of MRG domain-containing proteins in forming complexes, which may have important implications for understanding the biology of these organisms and developing new therapeutics. On the other hand, our validation of AF2 models for the determination of multiprotein complexes illuminates the power of using such artificial intelligence-derived tools in the future development of biology.

3.
Front Microbiol ; 12: 661547, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421834

RESUMEN

'Candidatus Liberibacter asiaticus' is known as the most pathogenic organism associated with citrus greening disease. Since its publicized emergence in Florida in 2005, 'Ca. L. asiaticus' remains unculturable. Currently, a limited number of potential disease effectors have been identified through in silico analysis. Therefore, these potential effectors remain poorly characterized and do not fully explain the complexity of symptoms observed in citrus trees infected with 'Ca. L. asiaticus.' LotP has been identified as a potential effector and have been partially characterized. This protein retains structural homology to the substrate binding domain of the Lon protease. LotP interacts with chaperones like GroEL, Hsp40, DnaJ, and ClpX and may exercise its biological role through interactions with different proteins involved in proteostasis networks. Here, we evaluate the interactome of LotP-revealing a new protein-protein interaction target (Lon-serine protease) and its effect on citrus plant tissue integrity. We found that via protein-protein interactions, LotP can enhance Lon protease activity, increasing the degradation rate of its specific targets. Infiltration of purified LotP strained citrus plant tissue causing photoinhibition and chlorosis after several days. Proteomics analysis of LotP tissues recovering after the infiltration revealed a large abundance of plant proteins associated with the stabilization and processing of mRNA transcripts, a subset of important transcription factors; and pathways associated with innate plant defense were highly expressed. Furthermore, interactions and substrate binding module of LotP suggest potential interactions with plant proteins, most likely proteases.

4.
Environ Microbiol ; 23(11): 7121-7138, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34431209

RESUMEN

In Liberibacter asiaticus, PrbP is a transcriptional regulatory protein involved in survival and persistence during host infection. Tolfenamic acid was previously found to inhibit interactions between PrbP and the promotor region of rplK, resulting in reduced survival of L. asiaticus in the citrus host. In this study, we performed transcriptome analyses to elucidate the PrbP regulon in L. crescens, as it is phylogenetically the closest related species to L. asiaticus that can be grown in laboratory conditions. Chemical inhibition of PrbP with tolfenamic acid revealed that PrbP is involved in the regulation of diverse cellular processes, including stress response, cell motility, cell cycle and biofilm formation. In vitro DNA binding and bacterial two-hybrid assays also suggested that PrbP is a global regulator of multiple transcription factors (RpoH, VisN, PleD, MucR, MocR and CtrA) at both transcriptional and/or post-transcriptional levels. Sub-lethal concentrations of tolfenamic acid significantly reduced the attachment of L. crescens during biofilm formation and decreased long-term persistence in biofilm structures. Overall, our findings show the importance of PrbP in regulating diverse biological processes through direct and indirect interactions with other transcriptional regulators in L. crescens.


Asunto(s)
Citrus , Rhizobiaceae , Biopelículas , Citrus/microbiología , Liberibacter , Enfermedades de las Plantas/microbiología , Rhizobiaceae/genética
5.
J Biol Chem ; 295(38): 13202-13212, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32709751

RESUMEN

Heme is an essential cofactor for many biological processes in aerobic organisms, which can synthesize it de novo through a conserved pathway. Trypanosoma cruzi, the etiological agent of Chagas disease, as well as other trypanosomatids relevant to human health, are heme auxotrophs, meaning they must import it from their mammalian hosts or insect vectors. However, how these species import and regulate heme levels is not fully defined yet. It is known that the membrane protein TcHTE is involved in T. cruzi heme transport, although its specific role remains unclear. In the present work, we studied endogenous TcHTE in the different life cycle stages of the parasite to gain insight into its function in heme transport and homeostasis. We have confirmed that TcHTE is predominantly detected in replicative stages (epimastigote and amastigote), in which heme transport activity was previously validated. We also showed that in epimastigotes, TcHTE protein and mRNA levels decrease in response to increments in heme concentration, confirming it as a member of the heme response gene family. Finally, we demonstrated that T. cruzi epimastigotes can sense intracellular heme by an unknown mechanism and regulate heme transport to adapt to changing conditions. Based on these results, we propose a model in which T. cruzi senses intracellular heme and regulates heme transport activity by adjusting the expression of TcHTE. The elucidation and characterization of heme transport and homeostasis will contribute to a better understanding of a critical pathway for T. cruzi biology allowing the identification of novel and essential proteins.


Asunto(s)
Hemo/metabolismo , Homeostasis , Modelos Biológicos , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/metabolismo , Enfermedad de Chagas/genética , Enfermedad de Chagas/metabolismo , Hemo/genética , Humanos , Proteínas Protozoarias/genética , Trypanosoma cruzi/genética
6.
Sci Rep ; 10(1): 5395, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32214166

RESUMEN

In this study, newly identified small molecules were examined for efficacy against 'Candidatus Liberibacter asiaticus' in commercial groves of sweet orange (Citrus sinensis) and white grapefruit (Citrus paradisi) trees. We used benzbromarone and/or tolfenamic acid delivered by trunk injection. We evaluated safety and efficacy parameters by performing RNAseq of the citrus host responses, 16S rRNA gene sequencing to characterize citrus-associated microbial communities during treatment, and qRT-PCR as an indirect determination of 'Ca. L. asiaticus' viability. Analyses of the C. sinensis transcriptome indicated that each treatment consistently induced genes associated with normal metabolism and growth, without compromising tree viability or negatively affecting the indigenous citrus-associated microbiota. It was found that treatment-associated reduction in 'Ca. L. asiaticus' was positively correlated with the proliferation of several core taxa related with citrus health. No symptoms of phytotoxicity were observed in any of the treated trees. Trials were also performed in commercial groves to examine the effect of each treatment on fruit productivity, juice quality and efficacy against 'Ca. L. asiaticus'. Increased fruit production (15%) was observed in C. paradisi following twelve months of treatment with benzbromarone and tolfenamic acid. These results were positively correlated with decreased 'Ca. L. asiaticus' transcriptional activity in root samples.


Asunto(s)
Benzbromarona/farmacología , Rhizobiaceae/efectos de los fármacos , ortoaminobenzoatos/farmacología , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Benzbromarona/metabolismo , Citrus/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/terapia , Hojas de la Planta/microbiología , ARN Ribosómico 16S/genética , Rhizobiaceae/genética , ortoaminobenzoatos/metabolismo
7.
Environ Microbiol ; 21(12): 4822-4835, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31631506

RESUMEN

Liberibacter asiaticus is the prevalent causative pathogen of Huanglongbing or citrus greening disease, which has resulted in a devastating crisis in the citrus industry. A thorough understanding of this pathogen's physiology and mechanisms to control cell survival is critical in the identification of therapeutic targets. YbeY is a highly conserved bacterial RNase that has been implicated in multiple roles. In this study, we evaluated the biochemical characteristics of the L. asiaticus YbeY (CLIBASIA_01560) and assessed its potential as a target for antimicrobials. YbeYLas was characterized as an endoribonuclease with activity on 3' and 5' termini of 16S and 23S rRNAs, and the capacity to suppress the E. coli ΔybeY phenotype. We predicted the YbeYLas protein:ligand interface and subsequently identified a flavone compound, luteolin, as a selective inhibitor. Site-directed mutagenesis was subsequently used to identify key residues involved in the catalytic activity of YbeYLas. Further evaluation of naturally occurring flavonoids in citrus trees indicated that both flavones and flavonols had potent inhibitory effects on YbeYLas . Luteolin was subsequently examined for efficacy against L. asiaticus in Huanglongbing-infected citrus trees, where a significant reduction in L. asiaticus gene expression was observed.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Flavonoides/química , Rhizobiaceae/enzimología , Ribonucleasas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrus/microbiología , Inhibidores Enzimáticos/metabolismo , Flavonoides/metabolismo , Enfermedades de las Plantas/microbiología , Rhizobiaceae/química , Rhizobiaceae/genética , Ribonucleasas/química , Ribonucleasas/genética , Ribonucleasas/metabolismo
8.
Biochem J ; 474(14): 2315-2332, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28588043

RESUMEN

Trypanosoma cruzi, the causative agent of Chagas disease, presents a complex life cycle and adapts its metabolism to nutrients' availability. Although T. cruzi is an aerobic organism, it does not produce heme. This cofactor is acquired from the host and is distributed and inserted into different heme-proteins such as respiratory complexes in the parasite's mitochondrion. It has been proposed that T. cruzi's energy metabolism relies on a branched respiratory chain with a cytochrome c oxidase-type aa3 (CcO) as the main terminal oxidase. Heme A, the cofactor for all eukaryotic CcO, is synthesized via two sequential enzymatic reactions catalyzed by heme O synthase (HOS) and heme A synthase (HAS). Previously, TcCox10 and TcCox15 (Trypanosoma cruzi Cox10 and Cox15 proteins) were identified in T. cruzi They presented HOS and HAS activity, respectively, when they were expressed in yeast. Here, we present the first characterization of TcCox15 in T. cruzi, confirming its role as HAS. It was differentially detected in the different T. cruzi stages, being more abundant in the replicative forms. This regulation could reflect the necessity of more heme A synthesis, and therefore more CcO activity at the replicative stages. Overexpression of a non-functional mutant caused a reduction in heme A content. Moreover, our results clearly showed that this hindrance in the heme A synthesis provoked a reduction on CcO activity and, in consequence, an impairment on T. cruzi survival, proliferation and infectivity. This evidence supports that T. cruzi depends on the respiratory chain activity along its life cycle, being CcO an essential terminal oxidase.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Hemo/análogos & derivados , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/patogenicidad , Sustitución de Aminoácidos , Animales , Proliferación Celular , Chlorocebus aethiops , Biología Computacional , Bases de Datos de Proteínas , Sistemas Especialistas , Técnicas de Inactivación de Genes , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hemo/biosíntesis , Isoenzimas/genética , Isoenzimas/metabolismo , Estadios del Ciclo de Vida , Mutagénesis Sitio-Dirigida , Mutación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Trypanosoma cruzi/citología , Trypanosoma cruzi/crecimiento & desarrollo , Células Vero
9.
PLoS Negl Trop Dis ; 10(1): e0004359, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26752206

RESUMEN

Trypanosoma cruzi, the etiological agent of Chagas' disease, presents nutritional requirements for several metabolites. It requires heme for the biosynthesis of several heme-proteins involved in essential metabolic pathways like mitochondrial cytochromes and respiratory complexes, as well as enzymes involved in the biosynthesis of sterols and unsaturated fatty acids. However, this parasite lacks a complete route for its synthesis. In view of these facts, T. cruzi has to incorporate heme from the environment during its life cycle. In other words, their hosts must supply the heme for heme-protein synthesis. Although the acquisition of heme is a fundamental issue for the parasite's replication and survival, how this cofactor is imported and distributed is poorly understood. In this work, we used different fluorescent heme analogs to explore heme uptake along the different life-cycle stages of T. cruzi, showing that this parasite imports it during its replicative stages: the epimastigote in the insect vector and the intracellular amastigote in the mammalian host. Also, we identified and characterized a T. cruzi protein (TcHTE) with 55% of sequence similarity to LHR1 (protein involved in L. amazonensis heme transport), which is located in the flagellar pocket, where the transport of nutrients proceeds in trypanosomatids. We postulate TcHTE as a protein involved in improving the efficiency of the heme uptake or trafficking in T. cruzi.


Asunto(s)
Proteínas Portadoras/metabolismo , Hemo/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/metabolismo , Animales , Proteínas Portadoras/genética , Chlorocebus aethiops , Clonación Molecular , Regulación de la Expresión Génica , Proteínas Protozoarias/genética , Trypanosoma cruzi/genética , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...