Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oncogene ; 41(18): 2571-2586, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35322197

RESUMEN

Combined therapy with anti-BRAF plus anti-MEK is currently used as first-line treatment of patients with metastatic melanomas harboring the somatic BRAF V600E mutation. However, the main issue with targeted therapy is the acquisition of tumor cell resistance. In a majority of resistant melanoma cells, the resistant process consists in epithelial-to-mesenchymal transition (EMT). This process called phenotype switching makes melanoma cells more invasive. Its signature is characterized by MITF low, AXL high, and actin cytoskeleton reorganization through RhoA activation. In parallel of this phenotype switching phase, the resistant cells exhibit an anarchic cell proliferation due to hyper-activation of the MAP kinase pathway. We show that a majority of human melanoma overexpress discoidin domain receptor 2 (DDR2) after treatment. The same result was found in resistant cell lines presenting phenotype switching compared to the corresponding sensitive cell lines. We demonstrate that DDR2 inhibition induces a decrease in AXL expression and reduces stress fiber formation in resistant melanoma cell lines. In this phenotype switching context, we report that DDR2 control cell and tumor proliferation through the MAP kinase pathway in resistant cells in vitro and in vivo. Therefore, inhibition of DDR2 could be a new and promising strategy for countering this resistance mechanism.


Asunto(s)
Receptor con Dominio Discoidina 2 , Melanoma , Línea Celular Tumoral , Proliferación Celular/genética , Receptor con Dominio Discoidina 2/genética , Resistencia a Antineoplásicos/genética , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf
2.
Eur J Neurosci ; 4(11): 1140-1158, 1992 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12106420

RESUMEN

In situ hybridization analysis of cells expressing messenger RNAs (mRNAs) for the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and their high-affinity receptors (trk, trkB and trkC) in the rat embryo revealed a complex but specific expression pattern for each of these mRNAs. For all mRNAs a developmentally regulated expression was seen in many different tissues. BDNF and NT-3 mRNAs were expressed in the sensory epithelia of the cochlea and vestibule macula of the sacculus and utricle, and both trkB and trkC mRNA were expressed in the spiral and vestibule ganglia innervating these sensory structures. NGF and NT-3 mRNA were found in the iris, innervated by the sympathetic neurons of the superior cervical ganglion and sensory neurons from the trigeminal ganglion, which expressed both trk and trkC mRNAs. Both NGF and NT-3 mRNAs were also expressed in other target fields of the trigeminal ganglion, the epithelium of the whisker follicles (NT-3 mRNA) and in the epithelium of the nose, tongue and jaw. NT-3 mRNA was found in the cerebellar external granule layer and trkC mRNA in the Purkinje layer of the cerebellar primordia. These sites of synthesis are consistent with a target-derived neurotrophic interaction for NGF, BDNF and NT-3. However, in some cases mRNAs for both the neurotrophins and their high-affinity receptors were detected in the same tissue, including the dorsal root, geniculate, superior, jugular, petrose and nodose ganglia, as well as in the hippocampus, frontal cortical plate and pineal recess, implying a local mode of action. Combined, these data suggest a broad function for the neurotrophins and their receptors in supporting neural innervation during embryonic development. The results also identify several novel neuronal systems that are likely to depend on the neurotrophins in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA