Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37241818

RESUMEN

Chiral and achiral vibrational sum-frequency generation (VSFG) spectroscopy was performed in the 1400-1700 and 2800-3800 cm-1 range to study the interfacial structure of photoactive yellow protein (PYP) adsorbed on polyethyleneimine (PEI) and poly-l-glutamic acid (PGA) surfaces. Nanometer-thick polyelectrolyte layers served as the substrate for PYP adsorption, with 6.5-pair layers providing the most homogeneous surfaces. When the topmost material was PGA, it acquired a random coil structure with a small number of ß2-fibrils. Upon adsorption on oppositely charged surfaces, PYP yielded similar achiral spectra. However, the VSFG signal intensity increased for PGA surfaces with a concomitant redshift of the chiral Cα-H and N-H stretching bands, suggesting increased adsorption for PGA compared to PEI. At low wavenumbers, both the backbone and the side chains of PYP induced drastic changes to all measured chiral and achiral VSFG spectra. Decreasing ambient humidity led to the loss of tertiary structure with a re-orientation of α-helixes, evidenced by a strongly blue-shifted chiral amide I band of the ß-sheet structure with a shoulder at 1654 cm-1. Our observations indicate that chiral VSFG spectroscopy is not only capable of determining the main type of secondary structure of PYP, i.e., ß-scaffold, but is also sensitive to tertiary protein structure.


Asunto(s)
Ácido Glutámico , Polietileneimina , Polietileneimina/química , Adsorción , Proteínas , Análisis Espectral
2.
Sci Rep ; 12(1): 5082, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35332211

RESUMEN

Nonlinear vibrational spectroscopy profits from broadband sources emitting in the molecular fingerprint region. Yet, broadband lasers operating at wavelengths above 7 µm have been lacking, while traditional cascaded parametric frequency down-conversion schemes suffer from exceedingly low conversion efficiencies. Here we present efficient, direct frequency down-conversion of femtosecond 100-kHz, 1.03-µm pulses to the mid-infrared from 7.5 to 13.3 µm in a supercontinuum-seeded, tunable, single-stage optical parametric amplifier based on the wide-bandgap material Cd0.65Hg0.35Ga2S4. The amplifier delivers near transform-limited, few-cycle pulses with an average power > 30 mW at center wavelengths between 8.8 and 10.6 µm, at conversion efficiencies far surpassing that of optical parametric amplification followed by difference-frequency generation or intrapulse difference-frequency generation. The pulse duration at 10.6 µm is 101 fs corresponding to 2.9 optical cycles with a spectral coverage of 760-1160 cm-1. CdxHg1-xGa2S4 is an attractive alternative to LiGaS2 and BaGa4S7 in small-scale, Yb-laser-pumped, few-cycle mid-infrared optical parametric amplifiers and offers a much higher nonlinear figure of merit compared to those materials. Leveraging the inherent spatial variation of composition in CdxHg1-xGa2S4, an approach is proposed to give access to a significant fraction of the molecular fingerprint region using a single crystal at a fixed phase matching angle.

3.
Opt Express ; 30(5): 7883-7893, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299541

RESUMEN

A Tm,Ho:CALGO laser passively mode-locked by a GaSb-based SESAM generated pulses as short as 52 fs at a central wavelength of 2015 nm with a broad spectral bandwidth of 82 nm (full width at half maximum) owing to the combined gain profiles of both dopants for σ-polarized light. The average output power reached 376 mW at a repetition rate of 85.65 MHz. In the continuous-wave regime, the laser was power scaled up to 1.01 W at 2080.6 nm with a slope efficiency of 32.0%, a laser threshold of 155 mW and π-polarized emission. Polarized spectroscopic properties of Ho3+ ions in singly doped and codoped CALGO crystals were revisited to explain the observed laser performance.

4.
Phys Chem Chem Phys ; 23(23): 13389-13395, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34105546

RESUMEN

The first vibrational sum-frequency generation (VSFG) spectra of chondroitin sulfate (CS) interacting with dipalmitoyl phosphatidylcholine (DPPC) at air-liquid interface are reported here, collected at a laser repetition rate of 100 kHz. By studying the VSFG spectra in the regions of 1050-1450 cm-1, 2750-3180 cm-1, and 3200-3825 cm-1, it was concluded that in the presence of Ca2+ ions, the head groups together with the head-group-bound water molecules in the DPPC monolayer are strongly influenced by the interaction with CS, while the organization of the phospholipid tails remains mostly unchanged. The interactions were observed at a CS concentration below 200 nM, which exemplifies the potential of VSFG in studying biomolecular interactions at low physiological concentrations. The VSFG spectra recorded in the O-H stretching region at chiral polarization combination imply that CS molecules are organized into ordered macromolecular superstructures with a chiral secondary structure.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Sulfatos de Condroitina/química , Calcio/química , Análisis Espectral , Agua/química
5.
Opt Lett ; 46(11): 2642-2645, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061077

RESUMEN

We report on sub-50 fs pulse generation from a passively mode-locked (ML) Tm,Ho-codoped crystalline laser operating in a 2 µm spectral region. A ${\rm Tm},{\rm Ho}{:}{\rm Ca}({\rm Gd},{\rm Lu}){{\rm AlO}_4}$ laser delivers pulses as short as 46 fs at 2033 nm with an average power of 121 mW at a pulse repetition rate of ${\sim}{78}\;{\rm MHz}$ employing a semiconductor saturable absorber mirror as a saturable absorber. To the best of our knowledge, this result represents the shortest pulses ever generated from a Tm- and/or Ho-based solid-state laser. Polarization switching in the anisotropic gain material is observed in the ML regime without any polarization selection elements which is essential for the shortest pulses.

6.
Appl Opt ; 59(33): 10493-10497, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33361983

RESUMEN

Mode-locked laser operation near 2.05 µm based on a mixed sesquioxide Tm:LuYO3 ceramic is demonstrated. Continuous-wave and wavelength-tunable operation is also investigated. Employing a GaSb-based semiconductor saturable absorber mirror as a saturable absorber, a maximum average output power of 133 mW is obtained for a pulse duration of 59 fs. Pulses as short as 54 fs, i.e., eight optical cycles are generated at a repetition rate of ∼78MHz with an average output power of 51 mW. To the best of our knowledge, this result represents the shortest pulse duration ever achieved from Tm-based solid-state mode-locked lasers.

7.
Front Plant Sci ; 11: 547818, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193480

RESUMEN

Membrane-bound or cytosolic light-sensitive proteins, playing a crucial role in energy- and signal-transduction processes of various photosynthetic microorganisms, have been optimized for sensing or harvesting light by myriads of years of evolution. Upon absorption of a photon, they undergo a usually cyclic reaction series of conformations, and the accompanying spectro-kinetic events assign robust nonlinear optical (NLO) properties for these chromoproteins. During recent years, they have attracted a considerable interest among researchers of the applied optics community as well, where finding the appropriate NLO material for a particular application is a pivotal task. Potential applications have emerged in various branches of photonics, including optical information storage and processing, higher-harmonic and white-light continuum generation, or biosensorics. In our earlier work, we also raised the possibility of using chromoproteins, such as bacteriorhodopsin (bR), as building blocks for the active elements of integrated optical (IO) circuits, where several organic and inorganic photonic materials have been considered as active components, but so far none of them has been deemed ideal for the purpose. In the current study, we investigate the linear and NLO properties of biofilms made of photoactive yellow protein (PYP) and bR. The kinetics of the photoreactions are monitored by time-resolved absorption experiments, while the refractive index of the films and its light-induced changes are measured using the Optical Waveguide Lightmode Spectroscopy (OWLS) and Z-scan techniques, respectively. The nonlinear refractive index and the refractive index change of both protein films were determined in the green spectral range in a wide range of intensities and at various laser repetition rates. The nonlinear refractive index and refractive index change of PYP were compared to those of bR, with respect to photonics applications. Our results imply that the NLO properties of these proteins make them promising candidates for utilization in applied photonics, and they should be considered as valid alternatives for active components of IO circuits.

8.
Opt Lett ; 45(22): 6142-6145, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33186935

RESUMEN

We demonstrate sub-100-fs Kerr-lens mode-locking of a Tm:MgWO4 laser emitting at ∼2µm assisted by a single-walled carbon-nanotube saturable absorber. A maximum average output power of 100 mW is achieved with pulse duration of 89 fs at a pulse repetition rate of ∼86MHz. The shortest pulse duration derived from frequency-resolved optical gating amounts to 76 fs at 2037 nm, corresponding to nearly bandwidth-limited pulses. To the best of our knowledge, these are the shortest pulses generated from any Tm-doped tungstate crystal and the first report on saturable absorber assisted Kerr-lens mode-locking of a Tm laser at ∼2µm.

9.
Opt Express ; 28(23): 34574-34585, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182922

RESUMEN

We present an optical parametric chirped pulse amplification (OPCPA) system delivering 4.4 TW pulses centered at 810 nm with a sub-9 fs duration and a carrier-envelope phase stability of 350 mrad. The OPCPA setup pumped by sub-10 ps pulses from two Yb:YAG thin-disk lasers at 100 Hz repetition rate is optimized for a high conversion-efficiency. The terawatt pulses of the OPCPA are utilized for generating intense extreme ultraviolet (XUV) pulses by high-order harmonic generation, achieving XUV pulse energies approaching the microjoule level.

10.
Opt Lett ; 45(20): 5692-5695, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33057261

RESUMEN

We report on a microjoule-scale mid-infrared optical parametric amplifier (OPA) based on the recently developed wide-bandgap orthorhombic crystal, BaGa4S7 (BGS) and directly compare its performance to that of LiGaS2 (LGS) in the same OPA setup. The source is based on a single OPA stage amplifying supercontinuum seed pulses with a quantum efficiency of 29% at an idler wavelength of 10 µm, featuring nominally carrier-envelope phase-stable pulses. As a result of pumping the OPA directly at 1 µm, the overall conversion efficiency far exceeds that of traditional schemes based on OPAs followed by difference frequency generation. Chirp compensation using bulk germanium resulted in 126 fs pulses covering the 7.6-11.5 µm spectral range. BGS holds great promise for power scaling due to its availability in larger single-crystal sizes than LGS.

11.
Opt Express ; 27(11): 15289-15297, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163726

RESUMEN

We present a 100 kHz broadband vibrational sum-frequency generation (VSFG) spectrometer operating in the 5.7-10.5 µm (950-1750 cm-1) wavelength range. The mid-infrared beam of the system is obtained from a collinear, type-I LiGaS2-crystal-based optical parametric amplifier seeded by a supercontinuum and pumped directly by 180 fs, ~32 µJ, 1.03 µm pulses from an Yb:KGd(WO4)2 laser system. Up to 0.5 µJ mid-infrared pulses with durations below 100 fs were obtained after dispersion compensation utilizing bulk materials. We demonstrate the utility of the spectrometer by recording high-resolution, low-noise vibrational spectra of Langmuir-Blodgett supported lipid monolayers on CaF2. The presented VSFG spectrometer scheme offers superior signal-to-noise ratios and constitutes a high-efficiency, low-cost, easy-to-use alternative to traditional schemes relying on optical parametric amplification followed by difference frequency generation.

12.
Anal Bioanal Chem ; 411(19): 4861-4871, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30820629

RESUMEN

We present broadband vibrational sum-frequency generation (VSFG) spectra of Langmuir-Blodgett monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and different mixtures of them as model systems of pulmonary surfactants. The systematic study explored the dependence of the vibrational spectra as a function of surface tension and mixture ratio in various polarization combinations. The extremely short acquisition time and the high spectral resolution of our recently developed spectrometer helped minimize sample degradation under ambient conditions throughout the duration of the measurement and allowed the detection of previously unseen vibrational bands with unprecedented signal-to-noise ratio. The dramatically improved capability to record reliable vibrational spectra together with the label-free nature of the VSFG method provides direct access to native lipid structure and dynamics directly in the monolayer. The resulting data deliver quantitative information for structural analysis of multi-component phospholipid monolayers and may aid in the development of new synthetic pulmonary surfactants.


Asunto(s)
Fosfatidilcolinas/química , Análisis Espectral/métodos , 1,2-Dipalmitoilfosfatidilcolina , Membrana Dobles de Lípidos/química , Surfactantes Pulmonares/química , Reproducibilidad de los Resultados , Propiedades de Superficie , Vibración
13.
Opt Express ; 26(20): 25793-25804, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30469675

RESUMEN

We demonstrate a dual-beam infrared optical parametric source featuring a noncollinear KTA booster amplifier and straightforward angular dispersion compensation of the idler beam. Through careful beam and pulse characterization, and high-harmonic generation in a crystalline solid, we show that the corrected idler beam is diffraction-limited, astigmatism-free, and compressible to its transform-limited, 5-cycle pulse duration. Pumped by only 40-µJ pulses at 1.03 µm, the parametric source delivers 7.8-µJ, 38-fs, 1.53-µm and 2.3-µJ, 53-fs, CEP-stable, 3.1-µm pulses at a repetition rate of 100 kHz. The scheme provides a promising route to scale the pulse energy and average power beyond PPLN- or KTA-based collinear OPA architectures.

14.
Opt Lett ; 43(21): 5246-5249, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382978

RESUMEN

We present a 100 kHz optical parametric chirped pulse amplifier (OPCPA) developed for strong-field attosecond physics and soft-x-ray transient absorption experiments. The system relies on noncollinear potassium titanyl arsenate booster OPCPAs and is pumped by a 244 W, 1.1 ps Yb:YAG Innoslab chirped pulse laser amplifier. Two optically synchronized infrared output beams are simultaneously available: a 430 µJ, 51 fs, carrier-envelope phase stable beam at 1.55 µm and an angular-dispersion-compensated, 125 µJ, 73 fs beam at 3.1 µm.

15.
Opt Lett ; 43(17): 4268-4271, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30160768

RESUMEN

A passively mode-locked Tm:CLNGG laser using single-walled carbon nanotubes (SWCNT) as a saturable absorber (SA) is demonstrated at 2017 nm. Pulses as short as 78 fs are generated at an 86 MHz repetition rate with an average output power of 54 mW. By increasing the output coupling from 0.5% to 1.5%, a higher power of 100 mW is achieved for slightly longer pulses with a duration of 105 fs at 1996 nm.

16.
J Chem Phys ; 148(10): 104702, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29544264

RESUMEN

Broadband vibrational sum-frequency generation (BB-VSFG) spectroscopy has become a well-established surface analytical tool capable of identifying the orientation and structure of molecular layers. A straightforward way to boost the sensitivity of the technique could be to increase the laser repetition rate beyond that of standard BB-VSFG spectrometers, which rely on Ti:sapphire lasers operating at repetition rates of 1-5 kHz. Nevertheless, possible thermally induced artifacts in the vibrational spectra due to higher laser average powers are unexplored. Here, we discuss laser power induced temperature accumulation effects that distort the BB-VSFG spectra of 1,2-diacyl-sn-glycero-3-phosphocholine at an interface between two transparent phases at repetition rates of 5, 10, 50, and 100 kHz at constant pulse energy. No heat-induced distortions were found in the spectra, suggesting that the increase in the laser repetition rate provides a feasible route to an improved signal-to-noise ratio or shorter data acquisition times in BB-VSFG spectroscopy for thin films on transparent substrates. The results have implications for future BB-VSFG spectrometers pushing the detection limit for molecular layers with low surface coverage.

17.
Opt Lett ; 42(16): 3076-3079, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28809876

RESUMEN

We present the first sub-100 fs bulk solid-state laser in the 2-µm spectral range employing the monoclinic Tm3+-dopedMgWO4 crystal as an active medium. By applying a graphene-based saturable absorber and chirped mirrors for dispersion management, stable self-starting mode-locked operation at 2017 nm was achieved. Nearly Fourier-limited pulses as short as 86 fs featuring a bandwidth of 53 nm were generated at a repetition rate of 76 MHz. A pulse energy of 1.1 nJ was achieved at 87 MHz for a pulse duration of 96 fs. The mode-locked Tm3+:MgWO4 laser exhibits excellent stability with a fundamental beat note extinction ratio of 80 dBc above noise level.

18.
Opt Express ; 25(4): 3104-3121, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241527

RESUMEN

During amplification in a noncollinear optical parametric amplifier the spatial and temporal coordinates of the amplified field are inherently coupled. These couplings or distortions can limit the peak intensity, among other things. In this work, a numerical study of the spatiotemporal distortions in BBO-based noncollinear optical parametric chirped-pulse amplifiers (NOPCPAs) is presented for a wide range of parameters and for different amplification conditions. It is shown that for Gaussian pump beams, gain saturation introduces strong distortions and high conversion efficiency always comes at the price of strong spatiotemporal couplings which drastically reduce the peak intensity even when pulse fronts of the pump and the signal are matched. However, high conversion efficiencies with minimum spatiotemporal distortions can still be achieved with flat-top pump beam profiles.

19.
Opt Lett ; 42(6): 1068-1071, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28295094

RESUMEN

Attosecond spectroscopy and precision frequency metrology depend on the stabilization of the carrier-envelope phase (CEP) of mode-locked lasers. Unfortunately, the phase of only a few types of lasers can be stabilized to jitters in the few-hundred millirad range. In a comparative experimental study, we analyze a femtosecond Ti:sapphire laser and three mode-locked fiber lasers. We numerically demodulate recorded time series of the free-running carrier-envelope beat note. Our analysis indicates a correlation between amplitude and frequency fluctuations at low Fourier frequencies for essentially all lasers investigated. While this correlation typically rolls off at frequencies beyond 100 kHz, we see clear indications for a broadband coupling mechanism in one of the fiber lasers. We suspect that the observed coupling mechanism acts to transfer intracavity power fluctuations into excess phase noise. This coupling mechanism is related to the mode-locking mechanism employed and not to the gain medium itself. We further verify this hypothesis by numerical simulations, which identify resonances of the saturable absorber mirror as a possible explanation for the coupling mechanism. Finally, we discuss how to avoid a detrimental influence of such resonances.

20.
Opt Express ; 23(26): 33157-63, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26831983

RESUMEN

An average-power-scalable, two-stage optical parametric chirped pulse amplifier is presented providing 90-µJ signal pulses at 1.55 µm and 45-µJ idler pulses at 3.1 µm at a repetition rate of 100 kHz. The signal pulses were recompressible to within a few percent of their ~50-fs Fourier limit in anti-reflection coated fused silica at negligible losses. The overall energy conversion efficiency from the 1030-nm pump to the recompressed signal reached 19%, significantly reducing the cost per watt of pump power compared to similar systems. The two-stage source will serve as the front-end of a three-stage system permitting the development of novel experimental strategies towards laser-based imaging of molecular structures and chemical reactivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...