Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
Pediatr Res ; 93(5): 1208-1215, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35953512

RESUMEN

BACKGROUND: Loss-of-function variants in MID1 are the most common cause of Opitz G/BBB syndrome (OS). The interpretation of intronic variants affecting the splicing is a rising issue in OS. METHODS: Exon sequencing of a 2-year-old boy with OS showed that he was a carrier of the de novo c.1286-10G>T variant in MID1. In silico predictions and minigene assays explored the effect of the variant on splicing. The minigene approach was also applied to two previously identified MID1 c.864+1G>T and c.1285+1G>T variants. RESULTS: Minigene assay demonstrated that the c.1286-10G>T variant generated the inclusion of eight nucleotides that predicted generation of a frameshift. The c.864+1G>T and c.1285+1G>T variants resulted in an in-frame deletion predicted to generate a shorter MID1 protein. In hemizygous males, this allowed reclassification of all the identified variants from "of unknown significance" to "likely pathogenic." CONCLUSIONS: Minigene assay supports functional effects from MID1 intronic variants. This paves the way to the introduction of similar second-tier investigations in the molecular diagnostics workflow of OS. IMPACT: Causative intronic variants in MID1 are rarely investigated in Opitz syndrome. MID1 is not expressed in blood and mRNA studies are hardly accessible in routine diagnostics. Minigene assay is an alternative for assessing the effect of intronic variants on splicing. This is the first study characterizing the molecular consequences of three MID1 variants for diagnostic purposes and demonstrating the efficacy of minigene assays in supporting their clinical interpretation. Review of the criteria according to the American College of Medical Genetics reassessed all variants as likely pathogenic.


Asunto(s)
Fisura del Paladar , Hipertelorismo , Masculino , Humanos , Preescolar , Mutación , Fisura del Paladar/genética , Hipertelorismo/genética , Ubiquitina-Proteína Ligasas/genética
3.
Genes (Basel) ; 13(2)2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35205294

RESUMEN

Opitz G/BBB syndrome (OS) is a rare genetic developmental condition characterized by congenital defects along the midline of the body. The main clinical signs are represented by hypertelorism, laryngo-tracheo-esophageal defects and hypospadias. The X-linked form of the disease is associated with mutations in the MID1 gene located in Xp22 whereas mutations in the SPECC1L gene in 22q11 have been linked to few cases of the autosomal dominant form of this disorder, as well as to other genetic syndromes. In this study, we have undertaken a mutation screening of the SPECC1L gene in samples of sporadic OS cases in which mutations in the MID1 gene were excluded. The heterozygous missense variants identified are already reported in variant databases raising the issue of their pathogenetic meaning. Recently, it was reported that some clinical manifestations peculiar to OS signs are not observed in patients carrying mutations in the SPECC1L gene, leading to the proposal of the designation of 'SPECC1L syndrome' to refer to this disorder. Our study confirms that patients with diagnosis of OS, mainly characterized by the presence of hypospadias and laryngo-tracheo-esophageal defects, do not carry pathogenic SPECC1L mutations. In addition, SPECC1L syndrome-associated mutations are clustered in two specific domains of the protein, whereas the missense variants detected in our work lies elsewhere and the impact of these variants in the function of this protein is difficult to ascertain with the current knowledge and will require further investigations. Nonetheless, our study provides further insight into the SPECC1L syndrome classification.


Asunto(s)
Hipertelorismo , Hipospadias , Esófago/anomalías , Femenino , Humanos , Hipertelorismo/genética , Hipertelorismo/patología , Hipospadias/genética , Hipospadias/patología , Masculino , Mutación , Fenotipo , Síndrome
4.
Cells ; 11(2)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053362

RESUMEN

TRIM36 is a member of the tripartite motif (TRIM) family of RING-containing proteins, also known as Haprin, which was first discovered for its abundance in testis and found to be implicated in the spermatozoa acrosome reaction. TRIM36 is a microtubule-associated E3 ubiquitin ligase that plays a role in cytoskeletal organization, and according to data gathered in different species, coordinates growth speed and stability, acting on the microtubules' plus end, and impacting on cell cycle progression. TRIM36 is also crucial for early developmental processes, in Xenopus, where it is needed for dorso-ventral axis formation, but also in humans as bi-allelic mutations in the TRIM36 gene cause a form of severe neural tube closure defect, called anencephaly. Here, we review TRIM36-related mechanisms implicated in such composite physiological and pathological processes.


Asunto(s)
Desarrollo Embrionario , Microtúbulos/enzimología , Espermatogénesis , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos , Masculino , Neoplasias/enzimología , Neoplasias/patología , Filogenia , Ubiquitina-Proteína Ligasas/química
5.
Cells ; 11(2)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053366

RESUMEN

The field of the Tripartite Motif (TRIM) family has progressively attracted increasing interest during the last two decades [...].


Asunto(s)
Enfermedad , Salud , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Autofagia , Humanos , Mutación/genética , Neoplasias/patología , Medicina Regenerativa , Ubiquitina-Proteína Ligasas/genética
6.
Cells ; 10(4)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917450

RESUMEN

Tripartite motif (TRIM) proteins are RING E3 ubiquitin ligases defined by a shared domain structure. Several of them are implicated in rare genetic diseases, and mutations in TRIM32 and TRIM-like malin are associated with Limb-Girdle Muscular Dystrophy R8 and Lafora disease, respectively. These two proteins are evolutionary related, share a common ancestor, and both display NHL repeats at their C-terminus. Here, we revmniew the function of these two related E3 ubiquitin ligases discussing their intrinsic and possible common pathophysiological pathways.


Asunto(s)
Enfermedades del Sistema Nervioso/metabolismo , Enfermedades Neuromusculares/metabolismo , Enfermedades Raras/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos , Enfermedades del Sistema Nervioso/fisiopatología , Enfermedades Neuromusculares/fisiopatología , Enfermedades Raras/fisiopatología , Transducción de Señal , Proteínas de Motivos Tripartitos/química , Ubiquitina-Proteína Ligasas/química
7.
Biotechniques ; 70(2): 81-88, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249919

RESUMEN

The discovery of circulating fetal DNA in the plasma of pregnant women has greatly promoted advances in noninvasive prenatal testing. Screening performance is enhanced with higher fetal fraction and analysis of samples whose fetal DNA fraction is lower than 4% are unreliable. Although current approaches to fetal fraction measurement are accurate, most of them are expensive and time consuming. Here we present a simple and cost-effective solution that provides a quick and reasonably accurate fetal fraction by directly evaluating the size distribution of circulating DNA fragments in the extracted maternal cell-free DNA. The presented approach could be useful in the presequencing stage of noninvasive prenatal testing to evaluate whether the sample is suitable for the test or a repeat blood draw is recommended.


Asunto(s)
Ácidos Nucleicos Libres de Células , Diagnóstico Prenatal , ADN , Femenino , Feto , Humanos , Embarazo , Análisis de Secuencia de ADN
8.
Gene ; 747: 144655, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32283114

RESUMEN

MID1 is an E3 ubiquitin ligase of the Tripartite Motif (TRIM) subfamily of RING-containing proteins, hence also known as TRIM18. MID1 is a microtubule-binding protein found in complex with the catalytic subunit of PP2A (PP2Ac) and its regulatory subunit alpha 4 (α4). To date, several substrates and interactors of MID1 have been described, providing evidence for the involvement of MID1 in a plethora of essential biological processes, especially during embryonic development. Mutations in the MID1 gene are responsible of the X-linked form of Opitz syndrome (XLOS), a multiple congenital disease characterised by defects in the development of midline structures during embryogenesis. Here, we review MID1-related physiological mechanisms as well as the pathological implication of the MID1 gene in XLOS and in other clinical conditions.


Asunto(s)
Enfermedad , Fisiología , Ubiquitina-Proteína Ligasas/genética , Desarrollo Embrionario , Humanos , Mutación/genética , Transducción de Señal
9.
Adv Exp Med Biol ; 1233: 311-325, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32274764

RESUMEN

The TRIM family comprises proteins characterized by the presence of the tripartite motif composed of a RING domain, one or two B-box domains and a coiled-coil region. The TRIM shared domain structure underscores a common biochemical function as E3 ligase within the ubiquitination cascade. The TRIM proteins represent one of the largest E3 ligase families counting in human more than 70 members. These proteins are implicated in a plethora of cellular processes such as apoptosis, cell cycle regulation, muscular physiology, and innate immune response. Consistently, their alteration results in several pathological conditions emphasizing their medical relevance. Here, the genetic and pathogenetic mechanisms of rare disorders directly caused by mutations in TRIM genes will be reviewed. These diseases fall into different pathological areas, from malformation birth defects due to developmental abnormalities, to neurological disorders and progressive teenage neuromuscular disorders. In many instances, TRIM E3 ligases act on several substrates thus exerting pleiotropic activities: the need of unraveling disease-specific TRIM pathways for a precise targeting therapy avoiding dramatic side effects will be discussed.


Asunto(s)
Enfermedades Genéticas Congénitas/enzimología , Enfermedades Genéticas Congénitas/genética , Enfermedades Raras/enzimología , Enfermedades Raras/genética , Proteínas de Motivos Tripartitos/química , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Dominios Proteicos , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
10.
Front Physiol ; 10: 274, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941058

RESUMEN

Ubiquitination is a post-translational modification that consists of ubiquitin attachment to target proteins through sequential steps catalysed by activating (E1), conjugating (E2), and ligase (E3) enzymes. Protein ubiquitination is crucial for the regulation of many cellular processes not only by promoting proteasomal degradation of substrates but also re-localisation of cellular factors and modulation of protein activity. Great importance in orchestrating ubiquitination relies on E3 ligases as these proteins recognise the substrate that needs to be modified at the right time and place. Here we focus on two members of the TRIpartite Motif (TRIM) family of RING E3 ligases, MID1, and MID2. We discuss the recent findings on these developmental disease-related proteins analysing the link between their activity on essential factors and the regulation of cytokinesis highlighting the possible consequence of alteration of this process in pathological conditions.

11.
Cells ; 8(3)2019 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-30884854

RESUMEN

Members of the tripartite motif family of E3 ubiquitin ligases are characterized by the presence of a conserved N-terminal module composed of a RING domain followed by one or two B-box domains, a coiled-coil and a variable C-terminal region. The RING and B-box are both Zn-binding domains but, while the RING is found in a large number of proteins, the B-box is exclusive to the tripartite motif (TRIM) family members in metazoans. Whereas the RING has been extensively characterized and shown to possess intrinsic E3 ligase catalytic activity, much less is known about the role of the B-box domains. In this study, we adopted an in vitro approach using recombinant point- and deletion-mutants to characterize the contribution of the TRIM32 Zn-binding domains to the activity of this E3 ligase that is altered in a genetic form of muscular dystrophy. We found that the RING domain is crucial for E3 ligase activity and E2 specificity, whereas a complete B-box domain is involved in chain assembly rate modulation. Further, in vitro, the RING domain is necessary to modulate TRIM32 oligomerization, whereas, in cells, both the RING and B-box cooperate to specify TRIM32 subcellular localization, which if altered may impact the pathogenesis of diseases.


Asunto(s)
Distrofia Muscular de Cinturas/genética , Mutación/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/química , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Zinc/metabolismo , Animales , Biocatálisis , Línea Celular , Humanos , Ratones , Proteínas Mutantes/metabolismo , Dominios Proteicos , Multimerización de Proteína , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
12.
Nat Commun ; 10(1): 926, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30804369

RESUMEN

Productive HIV-1 replication requires viral integrase (IN), which catalyzes integration of the viral genome into the host cell DNA. IN, however, is short lived and is rapidly degraded by the host ubiquitin-proteasome system. To identify the cellular factors responsible for HIV-1 IN degradation, we performed a targeted RNAi screen using a library of siRNAs against all components of the ubiquitin-conjugation machinery using high-content microscopy. Here we report that the E3 RING ligase TRIM33 is a major determinant of HIV-1 IN stability. CD4-positive cells with TRIM33 knock down show increased HIV-1 replication and proviral DNA formation, while those overexpressing the factor display opposite effects. Knock down of TRIM33 reverts the phenotype of an HIV-1 molecular clone carrying substitution of IN serine 57 to alanine, a mutation known to impair viral DNA integration. Thus, TRIM33 acts as a cellular factor restricting HIV-1 infection by preventing provirus formation.


Asunto(s)
Infecciones por VIH/metabolismo , Integrasa de VIH/metabolismo , VIH-1/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Infecciones por VIH/genética , Infecciones por VIH/virología , Integrasa de VIH/química , Integrasa de VIH/genética , VIH-1/genética , VIH-1/fisiología , Interacciones Huésped-Patógeno , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Estabilidad Proteica , Proteolisis , Provirus/enzimología , Provirus/genética , Provirus/fisiología , Factores de Transcripción/genética , Integración Viral
13.
Life Sci ; 212: 1-8, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30261159

RESUMEN

AIMS: (1) to identify the most dysregulated genes in ureter tissue affected by congenital anomalies of the kidney and urinary tract (CAKUT) and to extract the biological meaning of these markers; (2) to describe the key molecular networks in CAKUT and to provide expression validation of the genes selected from these networks. MAIN METHODS: Transcriptome data was obtained from ureter samples of CAKUT patients and controls by Illumina iScan microarray. Identification of differentially expressed genes was coupled with subsequent bioinformatics analyses. Expression of candidate genes was validated by qRT-PCR. KEY FINDINGS: Analysis of the transcriptome led to the identification of 78 commonly dysregulated genes in CAKUT tissue compared to controls. Integrative bioinformatic analyses of differentially expressed genes identified 7 major networks. The targets for qRT-PCR validation were selected as members of the major molecular networks in CAKUT, which had both, the significant high fold change and biological relevance for CAKUT. By qRT-PCR the substantial increase of LCN2, PROM1, SOSTDC1, and decrease of INA, RASD1 and TAC3 mRNA levels was confirmed. SIGNIFICANCE: Since CAKUT is a leading cause of end-stage renal disease in children, the search for molecular targets for postnatal therapy is of particular interest. Data described in this study represents the gene expression profile and significant molecular networks specific to human ureter affected by CAKUT. The discovery of impaired molecular factors and processes is the step towards the uncovering of the key mechanisms that reflect CAKUT postnatally and could lead to the affected tissue deterioration and end organ damage.


Asunto(s)
Anomalías Congénitas/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Riñón/anomalías , Transcriptoma , Uréter/fisiología , Sistema Urinario/anomalías , Estudios de Casos y Controles , Humanos
14.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1844-1854, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28760657

RESUMEN

MID1/TRIM18 is a member of the TRIM family of ubiquitin E3 ligases characterized by the presence of a conserved RING-containing N-terminal tripartite motif. Mutations in the MID1 gene have been associated with the X-linked form of Opitz Syndrome, a developmental disorder characterized by midline defects and intellectual disability. The effect of MID1 E3 ligase activity within the cell and the role in the pathogenesis of the disease is still not completely unraveled. Here, we report BRAF35, a non-canonical HMG nuclear factor, as a novel MID1 substrate. MID1 is implicated in BRAF35 ubiquitination promoting atypical poly-ubiquitination via K6-, K27- and K29-linkages. We observed a partial co-localization of the two proteins within cytoplasmic bodies. We found that MID1 depletion alters BRAF35 localization in these structures and increases BRAF35 stability affecting its cytoplasmic abundance. Our data reveal a novel role for MID1 and for atypical ubiquitination in balancing BRAF35 presence, and likely its activity, within nuclear and cytoplasmic compartments.


Asunto(s)
Fisura del Paladar/genética , Esófago/anomalías , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Proteínas del Grupo de Alta Movilidad/genética , Hipertelorismo/genética , Hipospadias/genética , Proteínas de Microtúbulos/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Secuencia de Aminoácidos , Fisura del Paladar/patología , Citoplasma/enzimología , Esófago/patología , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Hipertelorismo/patología , Hipospadias/patología , Proteínas de Microtúbulos/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
15.
Int J Biochem Cell Biol ; 79: 469-477, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27458054

RESUMEN

TRIM32 is a member of the TRIpartite Motif family characterised by the presence of an N-terminal three-domain-module that includes a RING domain, which confers E3 ubiquitin ligase activity, one or two B-box domains and a Coiled-Coil region that mediates oligomerisation. Several TRIM32 substrates were identified including muscular proteins and proteins involved in cell cycle regulation and cell motility. As ubiquitination is a versatile post-translational modification that can affect target turnover, sub-cellular localisation or activity, it is likely that diverse substrates may be differentially affected by TRIM32-mediated ubiquitination, reflecting its multi-faceted roles in muscle physiology, cancer and immunity. With particular relevance for muscle physiology, mutations in TRIM32 are associated with autosomal recessive Limb-Girdle Muscular Dystrophy 2H, a muscle-wasting disease with variable clinical spectrum ranging from almost asymptomatic to wheelchair-bound patients. In this review, we will focus on the ability of TRIM32 to mark specific substrates for proteasomal degradation discussing how the TRIM32-proteasome axis may (i) be important for muscle homeostasis and for the pathogenesis of muscular dystrophy; and (ii) define either an oncogenic or tumour suppressive role for TRIM32 in the context of different types of cancer.


Asunto(s)
Distrofias Musculares/enzimología , Neoplasias/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos , Músculos/enzimología , Músculos/fisiopatología , Distrofias Musculares/fisiopatología
16.
APMIS ; 123(8): 682-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25924778

RESUMEN

We have recently shown that the E3 ubiquitin ligase midline 1 (MID1) is upregulated in murine cytotoxic lymphocytes (CTL), where it controls exocytosis of lytic granules and the killing capacity. Accordingly, CTL from MID1 knock-out (MID1(-/-)) mice have a 25-30% reduction in exocytosis of lytic granules and cytotoxicity compared to CTL from wild-type (WT) mice. We wondered why the MID1 gene knock-out did not affect exocytosis and cytotoxicity more severely and speculated whether MID2, a close homologue of MID1, might partially compensate for the loss of MID1 in MID1(-/-) CTL. Here, we showed that MID2, like MID1, is upregulated in activated murine T cells. Furthermore, MID1(-/-) CTL upregulated MID2 two-twenty-fold stronger than CTL from WT mice, suggesting that MID2 might compensate for MID1. In agreement, transfection of MID2 into MID1(-/-) CTL completely rescued exocytosis of lytic granules in MID1(-/-) CTL, and vice versa, knock-down of MID2 inhibited exocytosis of lytic granules in both WT and MID1(-/-) CTL, demonstrating that both MID1 and MID2 play a central role in the regulation of granule exocytosis and that functional redundancy exists between MID1 and MID2 in CTL.


Asunto(s)
Exocitosis , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas/metabolismo , Linfocitos T Citotóxicos/citología , Factores de Transcripción/metabolismo , Animales , Gránulos Citoplasmáticos/metabolismo , Interferón gamma/sangre , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas , Regulación hacia Arriba
18.
PLoS One ; 9(12): e115387, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25506835

RESUMEN

Ovalbumin (OVA)-sensitized BALB/c mice were i.n. instilled with recombinant TNF-related apoptosis inducing ligand (TRAIL) 24 hours before OVA challenge. The total number of leukocytes and the levels of the chemokine CXCL-1/KC significantly increased in the bronchoalveolar lavage (BAL) fluids of allergic animals with respect to control littermates, but not in the BAL of mice i.n. pretreated with recombinant TRAIL before OVA challenge. In particular, TRAIL pretreatment significantly reduced the BAL percentage of both eosinophils and neutrophils. On the other hand, when TRAIL was administrated simultaneously to OVA challenge its effect on BAL infiltration was attenuated. Overall, the results show that the i.n. pretreatment with TRAIL down-modulated allergic airway inflammation.


Asunto(s)
Quimiocina CXCL1/metabolismo , Neumonía/tratamiento farmacológico , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Administración Intranasal , Alérgenos/inmunología , Animales , Quimiocina CXCL1/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Ratones , Ovalbúmina/inmunología , Neumonía/inmunología , Proteínas Recombinantes/administración & dosificación , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/inmunología , Ligando Inductor de Apoptosis Relacionado con TNF/administración & dosificación , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico
19.
Eur J Immunol ; 44(10): 3109-18, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25043946

RESUMEN

Midline 1 (MID1) is a microtubule-associated ubiquitin ligase that regulates protein phosphatase 2A activity. Loss-of-function mutations in MID1 lead to the X-linked Opitz G/BBB syndrome characterized by defective midline development during embryogenesis. Here, we show that MID1 is strongly upregulated in murine cytotoxic lymphocytes (CTLs), and that it controls TCR signaling, centrosome trafficking, and exocytosis of lytic granules. In accordance, we find that the killing capacity of MID1(-/-) CTLs is impaired. Transfection of MID1 into MID1(-/-) CTLs completely rescued lytic granule exocytosis, and vice versa, knockdown of MID1 inhibited exocytosis of lytic granules in WT CTLs, cementing a central role for MID1 in the regulation of granule exocytosis. Thus, MID1 orchestrates multiple events in CTL responses, adding a novel level of regulation to CTL activation and cytotoxicity.


Asunto(s)
Citotoxicidad Inmunológica/inmunología , Exocitosis/fisiología , Proteínas/inmunología , Vesículas Secretoras/metabolismo , Linfocitos T Citotóxicos/inmunología , Animales , Western Blotting , Citometría de Flujo , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vesículas Secretoras/inmunología , Linfocitos T Citotóxicos/metabolismo , Ubiquitina-Proteína Ligasas
20.
Nucleic Acids Res ; 42(12): 7793-806, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24895435

RESUMEN

Vertebrate organogenesis is critically sensitive to gene dosage and even subtle variations in the expression levels of key genes may result in a variety of tissue anomalies. MicroRNAs (miRNAs) are fundamental regulators of gene expression and their role in vertebrate tissue patterning is just beginning to be elucidated. To gain further insight into this issue, we analysed the transcriptomic consequences of manipulating the expression of miR-204 in the Medaka fish model system. We used RNA-Seq and an innovative bioinformatics approach, which combines conventional differential expression analysis with the behavior expected by miR-204 targets after its overexpression and knockdown. With this approach combined with a correlative analysis of the putative targets, we identified a wider set of miR-204 target genes belonging to different pathways. Together, these approaches confirmed that miR-204 has a key role in eye development and further highlighted its putative function in neural differentiation processes, including axon guidance as supported by in vivo functional studies. Together, our results demonstrate the advantage of integrating next-generation sequencing and bioinformatics approaches to investigate miRNA biology and provide new important information on the role of miRNAs in the control of axon guidance and more broadly in nervous system development.


Asunto(s)
Axones/fisiología , Perfilación de la Expresión Génica , MicroARNs/metabolismo , Neurogénesis/genética , Oryzias/genética , Animales , Axones/ultraestructura , Biología Computacional , Técnicas de Silenciamiento del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Animales , Oryzias/embriología , Oryzias/metabolismo , Retina/embriología , Retina/metabolismo , Retina/ultraestructura , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...