Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolism ; 142: 155512, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36746320

RESUMEN

BACKGROUND AND AIMS: Hyperglucagonemia is a characteristic feature of type 2 diabetes mellitus (T2DM). We examined the effect of chronic (48-72 h) physiologic increase (+50 mg/dl) in plasma glucose concentration on suppression of plasma glucagon concentration by insulin and by hyperglycemia in normal glucose tolerance (NGT) individuals. MATERIALS AND METHODS: Study One: 16 NGT subjects received OGTT and 3-step hyperinsulinemic (10, 20, 40 mU/m2·min) euglycemic clamp before and after 48 hour glucose infusion to increase plasma glucose by ~50 mg/dl. Study Two: 20 NGT subjects received OGTT and 2-step hyperglycemic (+125 and + 300 mg/dl) clamp before and after 72 hour glucose infusion. Plasma insulin, C-peptide and glucagon concentrations were measured during OGTT, euglycemic hyperinsulinemic and hyperglycemic clamps. Ratio of plasma glucagon/insulin was used as an index of insulin-mediated suppression of glucagon secretion. RESULTS: During all 3 insulin clamp steps (Study 1), plasma glucagon concentration was increased compared to baseline study, and plasma glucagon/insulin ratio was significantly reduced by 24 % (p < 0.05). The rate of insulin-stimulated glucose disposal was inversely correlated with plasma glucagon/insulin ratio (r = -0.44, p < 0.05) and with glucagon AUC (r = -0.48, p < 0.05). During the 2-step hyperglycemic clamp (Study 2) plasma glucagon was similar before and after 72 h of glucose infusion; however, glucagon/insulin ratio was significantly reduced (p < 0.05). Incremental area under plasma insulin curve during the first (r = -0.74, p < 0.001) and second (r = -0.85, p < 0.001) hyperglycemic clamp steps was strongly and inversely correlated with plasma glucagon/insulin ratio. CONCLUSION: Sustained (48-72 h) physiologic hyperglycemia (+50 mg/dl) caused whole body insulin resistance and impaired insulin-mediated suppression of glucagon secretion, suggesting a role for glucotoxicity in development of hyperglucagonemia in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Resistencia a la Insulina , Humanos , Insulina , Glucagón , Glucemia , Prueba de Tolerancia a la Glucosa , Glucosa , Resistencia a la Insulina/fisiología , Técnica de Clampeo de la Glucosa
2.
Diabetes Obes Metab ; 25(2): 426-434, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36204991

RESUMEN

AIMS: To examine the effect of pioglitazone on epicardial (EAT) and paracardial adipose tissue (PAT) and measures of diastolic function and insulin sensitivity in patients with type 2 diabetes mellitus (T2DM). METHODS: Twelve patients with T2DM without clinically manifest cardiovascular disease and 12 subjects with normal glucose tolerance (NGT) underwent cardiac magnetic resonance imaging to quantitate EAT and PAT and diastolic function before and after pioglitazone treatment for 24 weeks. Whole-body insulin sensitivity was measured with a euglycaemic insulin clamp and the Matsuda Index (oral glucose tolerance test). RESULTS: Pioglitazone reduced glycated haemoglobin by 0.9% (P < 0.05), increased HDL cholesterol by 7% (P < 0.05), reduced triacylglycerol by 42% (P < 0.01) and increased whole-body insulin-stimulated glucose uptake by 71% (P < 0.01) and Matsuda Index by 100% (P < 0.01). In patients with T2DM, EAT (P < 0.01) and PAT (P < 0.01) areas were greater compared with subjects with NGT, and decreased by 9% (P = 0.03) and 9% (P = 0.09), respectively, after pioglitazone treatment. Transmitral E/A flow rate and peak left ventricular flow rate (PLVFR) were reduced in T2DM versus NGT (P < 0.01) and increased following pioglitazone treatment (P < 0.01-0.05). At baseline normalized PLVFR inversely correlated with EAT (r = -0.45, P = 0.03) but not PAT (r = -0.29, P = 0.16). E/A was significantly and inversely correlated with EAT (r = -0.55, P = 0.006) and PAT (r = -0.40, P = 0.05). EAT and PAT were inversely correlated with whole-body insulin-stimulated glucose uptake (r = -0.68, P < 0.001) and with Matsuda Index (r = 0.99, P < 0.002). CONCLUSION: Pioglitazone reduced EAT and PAT areas and improved left ventricular (LV) diastolic function in T2DM. EAT and PAT are inversely correlated (PAT less strongly) with LV diastolic function and both EAT and PAT are inversely correlated with measures of insulin sensitivity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Tiazolidinedionas , Humanos , Pioglitazona/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico , Glucemia , Insulina , Pericardio/diagnóstico por imagen , Pericardio/patología , Glucosa , Tejido Adiposo/patología
3.
J Clin Endocrinol Metab ; 107(8): e3177-e3185, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35552423

RESUMEN

CONTEXT: Sustained increases in plasma glucose promote skeletal muscle insulin resistance independent from obesity and dyslipidemia (ie, glucotoxicity). Skeletal muscle lipids are key molecular determinants of insulin action, yet their involvement in the development of glucotoxicity is unclear. OBJECTIVE: To explore the impact of mild physiologic hyperglycemia on skeletal muscle lipids. DESIGN: Single group pretest-posttest. PARTICIPANTS: Healthy males and females with normal glucose tolerance. INTERVENTIONS: 72-hour glucose infusion raising plasma glucose by ~50 mg/dL. MAIN OUTCOME MEASURES: Skeletal muscle lipids, insulin sensitivity, lipid oxidation. RESULTS: Despite impairing insulin-mediated glucose disposal and suppressing fasting lipid oxidation, hyperglycemia did not alter either the content or composition of skeletal muscle triglycerides, diacylglycerides, or phospholipids. Skeletal muscle ceramides decreased after glucose infusion, likely in response to a reduction in free fatty acid concentrations. CONCLUSIONS: Our results demonstrate that the major lipid pools in skeletal muscle are unperturbed by sustained increases in glucose availability and suggest that glucotoxicity and lipotoxicity drive insulin resistance through distinct mechanistic pathways.


Asunto(s)
Hiperglucemia , Resistencia a la Insulina , Glucemia/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Femenino , Glucosa/metabolismo , Voluntarios Sanos , Humanos , Hiperglucemia/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Músculo Esquelético/metabolismo
4.
Diabetes ; 70(1): 204-213, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33033064

RESUMEN

The aim of the current study was to evaluate the effect of sustained physiologic increase of ∼50 mg/dL in plasma glucose concentration on insulin secretion in normal glucose-tolerant (NGT) subjects. Twelve NGT subjects without family history of type 2 diabetes mellitus (T2DM; FH-) and 8 NGT with family history of T2DM (FH+) received an oral glucose tolerance test and two-step hyperglycemic clamp (100 and 300 mg/dL) followed by intravenous arginine bolus before and after 72-h glucose infusion. Fasting plasma glucose increased from 94 ± 2 to 142 ± 4 mg/dL for 72 h. First-phase insulin secretion (0-10 min) increased by 70%, while second-phase insulin secretion during the first (10-80 min) and second (90-160 min) hyperglycemic clamp steps increased by 3.8-fold and 1.9-fold, respectively, following 72 h of physiologic hyperglycemia. Insulin sensitivity during hyperglycemic clamp declined by ∼30% and ∼55% (both P < 0.05), respectively, during the first and second hyperglycemic clamp steps. Insulin secretion/insulin resistance (disposition) index declined by 60% (second clamp step) and by 62% following arginine (both P < 0.005) following 72-h glucose infusion. The effect of 72-h glucose infusion on insulin secretion and insulin sensitivity was similar in subjects with and without FH of T2DM. Following 72 h of physiologic hyperglycemia, metabolic clearance rate of insulin was markedly reduced (P < 0.01). These results demonstrate that sustained physiologic hyperglycemia for 72 h 1) increases absolute insulin secretion but impairs ß-cell function, 2) causes insulin resistance, and 3) reduces metabolic clearance rate of insulin.


Asunto(s)
Glucemia/metabolismo , Hiperglucemia/metabolismo , Resistencia a la Insulina/fisiología , Secreción de Insulina/fisiología , Insulina/metabolismo , Adulto , Femenino , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Voluntarios Sanos , Humanos , Hiperglucemia/sangre , Masculino , Persona de Mediana Edad
5.
J Clin Endocrinol Metab ; 104(7): 2842-2850, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30789980

RESUMEN

CONTEXT: Chronic hyperglycemia worsens skeletal muscle insulin resistance and ß-cell function. However, the effect of sustained physiologic hyperglycemia on hepatic insulin sensitivity is not clear. OBJECTIVE: To examine the effect of sustained physiologic hyperglycemia (similar to that observed in patients with type 2 diabetes) on endogenous (primarily reflecting hepatic) glucose production (EGP) in healthy individuals. DESIGN: Volunteers participated in a three-step hyperinsulinemic (10, 20, 40 mU/m2 per minute) euglycemic clamp before and after a 48-hour glucose infusion to increase plasma glucose concentration by ∼40 mg/dL above baseline. EGP was measured with 3-3H-glucose before and after chronic glucose infusion. PARTICIPANTS: Sixteen persons with normal glucose tolerance [eight with and eight without a family history (FH) of diabetes] participated in the study. MAIN OUTCOME MEASURE: EGP. RESULTS: Basal EGP increased following 48 hours of glucose infusion (from a mean ± SEM of 2.04 ± 0.08 to 3.06 ± 0.29 mg/kgffm⋅ min; P < 0.005). The hepatic insulin resistance index (basal EGP × fasting plasma insulin) markedly increased following glucose infusion (20.1 ± 1.8 to 51.7 ± 6.6; P < 0.005) in both FH+ and FH- subjects. CONCLUSION: Sustained physiologic hyperglycemia for as little as 48 hours increased the rate of basal hepatic glucose production and induced hepatic insulin resistance in health persons with normal glucose tolerance, providing evidence for the role of glucotoxicity in the increase in hepatic glucose production in type 2 diabetes.


Asunto(s)
Glucemia/metabolismo , Gluconeogénesis/fisiología , Glucogenólisis/fisiología , Hiperglucemia/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Adulto , Péptido C/metabolismo , Femenino , Glucagón/metabolismo , Gluconeogénesis/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacología , Técnica de Clampeo de la Glucosa , Glucogenólisis/efectos de los fármacos , Voluntarios Sanos , Humanos , Hiperglucemia/inducido químicamente , Insulina/metabolismo , Hígado/efectos de los fármacos , Masculino , Persona de Mediana Edad , Tritio
6.
Diabetes ; 67(12): 2507-2517, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30213826

RESUMEN

Chronic hyperglycemia causes insulin resistance, but the inheritability of glucotoxicity and the underlying mechanisms are unclear. We examined the effect of 3 days of hyperglycemia on glucose disposal, enzyme activities, insulin signaling, and protein O-GlcNAcylation in skeletal muscle of individuals without (FH-) or with (FH+) family history of type 2 diabetes. Twenty-five subjects with normal glucose tolerance received a [3-3H]glucose euglycemic insulin clamp, indirect calorimetry, and vastus-lateralis biopsies before and after 3 days of saline (n = 5) or glucose (n = 10 FH- and 10 FH+) infusion to raise plasma glucose by ∼45 mg/dL. At baseline, FH+ had lower insulin-stimulated glucose oxidation and total glucose disposal (TGD) but similar nonoxidative glucose disposal and basal endogenous glucose production (bEGP) compared with FH- After 3 days of glucose infusion, bEGP and glucose oxidation were markedly increased, whereas nonoxidative glucose disposal and TGD were lower versus baseline, with no differences between FH- and FH+ subjects. Hyperglycemia doubled skeletal muscle glycogen content and impaired activation of glycogen synthase (GS), pyruvate dehydrogenase, and Akt, but protein O-GlcNAcylation was unchanged. Insulin resistance develops to a similar extent in FH- and FH+ subjects after chronic hyperglycemia, without increased protein O-GlcNAcylation. Decreased nonoxidative glucose disposal due to impaired GS activation appears to be the primary deficit in skeletal muscle glucotoxicity.


Asunto(s)
Glucemia/metabolismo , Glucosa/farmacología , Hiperglucemia/metabolismo , Resistencia a la Insulina/fisiología , Adulto , Femenino , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Oxidación-Reducción
7.
Diabetes Care ; 40(11): 1530-1536, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28847910

RESUMEN

OBJECTIVE: To examine the effect of pioglitazone on myocardial insulin sensitivity and left ventricular (LV) function in patients with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: Twelve subjects with T2D and 12 with normal glucose tolerance received a euglycemic insulin clamp. Myocardial glucose uptake (MGU) and myocardial perfusion were measured with [18F]fluoro-2-deoxy-d-glucose and [15O]H2O positron emission tomography before and after 24 weeks of pioglitazone treatment. Myocardial function and transmitral early diastolic relation/atrial contraction (E/A) flow ratio were measured with magnetic resonance imaging. RESULTS: Pioglitazone reduced HbA1c by 0.9%; decreased systolic and diastolic blood pressure by 7 ± 2 and 7 ± 2 mmHg, respectively (P < 0.05); and increased whole-body insulin-stimulated glucose uptake by 71% (3.4 ± 1.3 to 5.8 ± 2.1 mg/kg · min; P < 0.01) in subjects with T2D. Pioglitazone enhanced MGU by 75% (0.24 ± 0.14 to 0.42 ± 0.13 µmol/min · g; P < 0.01) and myocardial perfusion by 16% (0.95 ± 0.16 to 1.10 ± 0.25 mL/min · g; P < 0.05). Measures of diastolic function, E/A ratio (1.04 ± 0.3 to 1.25 ± 0.4) and peak LV filling rate (349 ± 107 to 433 ± 99 mL/min), both increased (P < 0.01). End-systolic volume, end-diastolic volume, peak LV ejection rate, and cardiac output trended to increase (P not significant), whereas the ejection fraction (61 ± 6 to 66 ± 7%) and stroke volume increased significantly (71 ± 20 to 80 ± 20 L/min; both P < 0.05). CONCLUSIONS: Pioglitazone improves whole-body and myocardial insulin sensitivity, LV diastolic function, and systolic function in T2D. Improved myocardial insulin sensitivity and diastolic function are strongly correlated.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diástole/efectos de los fármacos , Tiazolidinedionas/administración & dosificación , Función Ventricular Izquierda/efectos de los fármacos , Adulto , Glucemia/metabolismo , Presión Sanguínea/efectos de los fármacos , Índice de Masa Corporal , Colesterol/sangre , Femenino , Técnica de Clampeo de la Glucosa , Hemoglobina Glucada/metabolismo , Humanos , Hipoglucemiantes/administración & dosificación , Resistencia a la Insulina , Masculino , Persona de Mediana Edad , Miocardio/metabolismo , Pioglitazona , Volumen Sistólico/efectos de los fármacos , Sístole/efectos de los fármacos , Triglicéridos/sangre
8.
Diabetes Care ; 39(11): 2036-2041, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27561923

RESUMEN

OBJECTIVE: Insulin resistance is associated with mitochondrial dysfunction and decreased ATP synthesis. Treatment of individuals with type 2 diabetes mellitus (T2DM) with sodium-glucose transporter 2 inhibitors (SGLT2i) improves insulin sensitivity. However, recent reports have demonstrated development of ketoacidosis in subjects with T2DM treated with SGLT2i. The current study examined the effect of improved insulin sensitivity with dapagliflozin on 1) mitochondrial ATP synthesis and 2) substrate oxidation rates and ketone production. RESEARCH DESIGN AND METHODS: The study randomized 18 individuals with T2DM to dapagliflozin (n = 9) or placebo (n = 9). Before and after 2 weeks, subjects received an insulin clamp with tritiated glucose, indirect calorimetry, and muscle biopsies. RESULTS: Dapagliflozin reduced fasting plasma glucose (167 ± 13 to 128 ± 6 mg/dL) and increased insulin-stimulated glucose disposal by 36% (P < 0.01). Glucose oxidation decreased (1.06 to 0.80 mg/kg ⋅ min, P < 0.05), whereas nonoxidative glucose disposal (glycogen synthesis) increased (2.74 to 4.74 mg/kg ⋅ min, P = 0.03). Dapagliflozin decreased basal glucose oxidation and increased lipid oxidation and plasma ketone concentration (0.05 to 0.19 mmol/L, P < 0.01) in association with an increase in fasting plasma glucagon (77 ± 8 to 94 ± 13, P < 0.01). Dapagliflozin reduced the ATP synthesis rate, which correlated with an increase in plasma ketone concentration. CONCLUSIONS: Dapagliflozin improved insulin sensitivity and caused a shift from glucose to lipid oxidation, which, together with an increase in glucagon-to-insulin ratio, provide the metabolic basis for increased ketone production.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Glucósidos/farmacología , Cetonas/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Transportador 2 de Sodio-Glucosa/metabolismo , Adolescente , Adulto , Anciano , Glucemia/metabolismo , Calorimetría Indirecta , Creatinina/sangre , Método Doble Ciego , Glucagón/sangre , Humanos , Insulina/sangre , Resistencia a la Insulina , Persona de Mediana Edad , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Adulto Joven
9.
J Clin Endocrinol Metab ; 101(3): 1249-56, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26765576

RESUMEN

AIM: To investigate the effect of lowering the plasma glucose and free fatty acid (FFA) concentrations with dapagliflozin and acipimox, respectively, on insulin sensitivity and insulin secretion in T2DM individuals. METHODS: Fourteen male T2DM patients received an oral glucose tolerance test and euglycemic hyperinsulinemic clamp at baseline and were treated for 3 weeks with dapagliflozin (10 mg per day). During week 3, acipimox (250 mg four times per day) treatment was added to dapagliflozin. The oral glucose tolerance test and insulin clamp were repeated at the end of weeks 2 and 3. RESULTS: Dapagliflozin caused glucosuria and significantly lowered the plasma glucose concentration (by 35 mg/dL; P < .01), whereas the fasting plasma FFA concentration was unaffected. Acipimox caused a further decrease in the fasting plasma glucose concentration (by 20 mg/dL; P < .01) and a significant decrease in the fasting plasma FFA concentration. Compared to baseline, insulin-mediated glucose disposal increased significantly at week 2 (from 4.48 ± 0.50 to 5.30 ± 0.50 mg/kg · min; P < .05). However, insulin-mediated glucose disposal at week 3 (after the addition of acipimox) did not differ significantly from that at week 2. Glucose-stimulated insulin secretion at week 2 increased significantly compared to baseline, and it increased further and significantly at week 3 compared to week 2. CONCLUSION: Lowering the plasma glucose concentration with dapagliflozin improves both insulin sensitivity and ß-cell function, whereas lowering plasma FFA concentration by addition of acipimox to dapagliflozin improves ß-cell function without significantly affecting insulin sensitivity.


Asunto(s)
Compuestos de Bencidrilo/administración & dosificación , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucósidos/administración & dosificación , Hipolipemiantes/administración & dosificación , Resistencia a la Insulina , Insulina/metabolismo , Pirazinas/administración & dosificación , Adulto , Anciano , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/sangre , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Persona de Mediana Edad , Adulto Joven
10.
J Clin Endocrinol Metab ; 100(5): 1927-32, 2015 05.
Artículo en Inglés | MEDLINE | ID: mdl-25710563

RESUMEN

BACKGROUND: ß-Cell dysfunction is a core defect in T2DM, and chronic, sustained hyperglycemia has been implicated in progressive ß-cell failure, ie, glucotoxicity. The aim of the present study was to examine the effect of lowering the plasma glucose concentration with dapagliflozin, a glucosuric agent, on ß-cell function in T2DM individuals. RESEARCH DESIGN AND METHODS: Twenty-four subjects with T2DM received dapagliflozin (n = 16) or placebo (n = 8) for 2 weeks, and a 75-g oral glucose tolerance test (OGTT) and insulin clamp were performed before and after treatment. Plasma glucose, insulin, and C-peptide concentrations were measured during the OGTT. RESULTS: Dapagliflozin significantly lowered both the fasting and 2-hour plasma glucose concentrations and the incremental area under the plasma glucose concentration curve (ΔG0-120) during OGTT by -33 ± 5 mg/dL, -73 ± 9 mg/dL, and -60 ± 12 mg/dL · min, respectively, compared to -13 ± 9, -33 ± 13, and -18 ± 9 reductions in placebo-treated subjects (both P < .01). The incremental area under the plasma C-peptide concentration curve tended to increase in dapagliflozin-treated subjects, whereas it did not change in placebo-treated subjects. Thus, ΔC-Pep0-120/ΔG0-120 increased significantly in dapagliflozin-treated subjects, whereas it did not change in placebo-treated subjects (0.019 ± 0.005 vs 0.002 ± 0.006; P < .01). Dapagliflozin significantly improved whole-body insulin sensitivity (insulin clamp). Thus, ß-cell function, measured as ΔC-Pep0-120/ ΔG0-120 ÷ insulin resistance, increased by 2-fold (P < .01) in dapagliflozin-treated vs placebo-treated subjects. CONCLUSION: Lowering the plasma glucose concentration with dapagliflozin markedly improves ß-cell function, providing strong support in man for the glucotoxic effect of hyperglycemia on ß-cell function.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucósidos/farmacología , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Compuestos de Bencidrilo/uso terapéutico , Péptido C/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/fisiopatología , Prueba de Tolerancia a la Glucosa , Glucósidos/uso terapéutico , Humanos , Hiperglucemia/sangre , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/fisiopatología , Hipoglucemiantes/uso terapéutico , Insulina/sangre , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
11.
J Clin Invest ; 124(2): 509-14, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24463448

RESUMEN

Chronic hyperglycemia impairs insulin action, resulting in glucotoxicity, which can be ameliorated in animal models by inducing glucosuria with renal glucose transport inhibitors. Here, we examined whether reduction of plasma glucose with a sodium-glucose cotransporter 2 (SGLT2) inhibitor could improve insulin-mediated tissue glucose disposal in patients with type 2 diabetes. Eighteen diabetic men were randomized to receive either dapagliflozin (n = 12) or placebo (n = 6) for 2 weeks. We measured insulin-mediated whole body glucose uptake and endogenous glucose production (EGP) at baseline and 2 weeks after treatment using the euglycemic hyperinsulinemic clamp technique. Dapagliflozin treatment induced glucosuria and markedly lowered fasting plasma glucose. Insulin-mediated tissue glucose disposal increased by approximately 18% after 2 weeks of dapagliflozin treatment, while placebo-treated subjects had no change in insulin sensitivity. Surprisingly, following dapagliflozin treatment, EGP increased substantially and was accompanied by an increase in fasting plasma glucagon concentration. Together, our data indicate that reduction of plasma glucose with an agent that works specifically on the kidney to induce glucosuria improves muscle insulin sensitivity. However, glucosuria induction following SGLT2 inhibition is associated with a paradoxical increase in EGP. These results provide support for the glucotoxicity hypothesis, which suggests that chronic hyperglycemia impairs insulin action in individuals with type 2 diabetes.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucósidos/uso terapéutico , Insulina/metabolismo , Músculos/efectos de los fármacos , Compuestos de Bencidrilo , Peso Corporal , Ayuno , Glucagón/sangre , Glucosa/análisis , Técnica de Clampeo de la Glucosa , Humanos , Hiperglucemia/metabolismo , Insulina/sangre , Masculino , Metformina/administración & dosificación , Persona de Mediana Edad , Transportador 2 de Sodio-Glucosa , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Compuestos de Sulfonilurea/administración & dosificación , Factores de Tiempo
12.
Diabetes ; 63(8): 2812-20, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24353180

RESUMEN

Insulin resistance and dysregulation of free fatty acid (FFA) metabolism are core defects in type 2 diabetic (T2DM) and obese normal glucose tolerant (NGT) individuals. Impaired muscle mitochondrial function (reduced ATP synthesis) also has been described in insulin-resistant T2DM and obese subjects. We examined whether reduction in plasma FFA concentration with acipimox improved ATP synthesis rate and altered reactive oxygen species (ROS) production. Eleven NGT obese and 11 T2DM subjects received 1) OGTT, 2) euglycemic insulin clamp with muscle biopsy, and 3) (1)H-magnetic resonance spectroscopy of tibialis anterior muscle before and after acipimox (250 mg every 6 h for 12 days). ATP synthesis rate and ROS generation were measured in mitochondria isolated from muscle tissue ex vivo with chemoluminescence and fluorescence techniques, respectively. Acipimox 1) markedly reduced the fasting plasma FFA concentration and enhanced suppression of plasma FFA during oral glucose tolerance tests and insulin clamp in obese NGT and T2DM subjects and 2) enhanced insulin-mediated muscle glucose disposal and suppression of hepatic glucose production. The improvement in insulin sensitivity was closely correlated with the decrease in plasma FFA in obese NGT (r = 0.81) and T2DM (r = 0.76) subjects (both P < 0.001). Mitochondrial ATP synthesis rate increased by >50% in both obese NGT and T2DM subjects and was strongly correlated with the decrease in plasma FFA and increase in insulin-mediated glucose disposal (both r > 0.70, P < 0.001). Production of ROS did not change after acipimox. Reduction in plasma FFA in obese NGT and T2DM individuals improves mitochondrial ATP synthesis rate, indicating that the mitochondrial defect in insulin-resistant individuals is, at least in part, reversible.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos no Esterificados/sangre , Resistencia a la Insulina/fisiología , Mitocondrias/metabolismo , Obesidad/metabolismo , Pirazinas/farmacología , Adulto , Femenino , Glucosa/metabolismo , Humanos , Hipolipemiantes/administración & dosificación , Hipolipemiantes/farmacología , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Pirazinas/administración & dosificación , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...