Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(7): 499, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997255

RESUMEN

Dynein complexes are large, multi-unit assemblies involved in many biological processes via their critical roles in protein transport and axoneme motility. Using next-generation sequencing of infertile men presenting with low or no sperm in their ejaculates, we identified damaging variants in the dynein-related gene AXDND1. We thus hypothesised that AXDND1 is a critical regulator of male fertility. To test this hypothesis, we produced a knockout mouse model. Axdnd1-/- males were sterile at all ages but presented with an evolving testis phenotype wherein they could undergo one round of histologically replete spermatogenesis followed by a rapid depletion of the seminiferous epithelium. Marker experiments identified a role for AXDND1 in maintaining the balance between differentiation-committed and self-renewing spermatogonial populations, resulting in disproportionate production of differentiating cells in the absence of AXDND1 and increased sperm production during initial spermatogenic waves. Moreover, long-term spermatogonial maintenance in the Axdnd1 knockout was compromised, ultimately leading to catastrophic germ cell loss, destruction of blood-testis barrier integrity and immune cell infiltration. In addition, sperm produced during the first wave of spermatogenesis were immotile due to abnormal axoneme structure, including the presence of ectopic vesicles and abnormalities in outer dense fibres and microtubule doublet structures. Sperm output was additionally compromised by a severe spermiation defect and abnormal sperm individualisation. Collectively these data identify AXDND1 as an atypical dynein complex-related protein with a role in protein/vesicle transport of relevance to spermatogonial function and sperm tail formation in mice and humans. This study underscores the importance of studying the consequences of gene loss-of-function on both the establishment and maintenance of male fertility.


Asunto(s)
Ratones Noqueados , Cola del Espermatozoide , Espermatogénesis , Espermatogonias , Masculino , Animales , Humanos , Espermatogénesis/genética , Ratones , Espermatogonias/metabolismo , Cola del Espermatozoide/metabolismo , Dineínas/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Testículo/metabolismo , Diferenciación Celular , Ratones Endogámicos C57BL
2.
EMBO Rep ; 25(6): 2722-2742, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38773322

RESUMEN

Alpha, beta, and gamma tubulins are essential building blocks for all eukaryotic cells. The functions of the non-canonical tubulins, delta, epsilon, and zeta, however, remain poorly understood and their requirement in mammalian development untested. Herein we have used a spermatogenesis model to define epsilon tubulin (TUBE1) function in mice. We show that TUBE1 is essential for the function of multiple complex microtubule arrays, including the meiotic spindle, axoneme and manchette and in its absence, there is a dramatic loss of germ cells and male sterility. Moreover, we provide evidence for the interplay between TUBE1 and katanin-mediated microtubule severing, and for the sub-specialization of individual katanin paralogs in the regulation of specific microtubule arrays.


Asunto(s)
Katanina , Microtúbulos , Espermatogénesis , Tubulina (Proteína) , Animales , Masculino , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Ratones , Katanina/metabolismo , Katanina/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Células Germinativas/metabolismo , Huso Acromático/metabolismo , Espermatozoides/metabolismo , Infertilidad Masculina/metabolismo , Infertilidad Masculina/genética , Ratones Noqueados , Axonema/metabolismo
3.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570187

RESUMEN

The transition zone is a specialised gate at the base of cilia/flagella, which separates the ciliary compartment from the cytoplasm and strictly regulates protein entry. We identified a potential new regulator of the male germ cell transition zone, CEP76. We demonstrated that CEP76 was involved in the selective entry and incorporation of key proteins required for sperm function and fertility into the ciliary compartment and ultimately the sperm tail. In the mutant, sperm tails were shorter and immotile as a consequence of deficits in essential sperm motility proteins including DNAH2 and AKAP4, which accumulated at the sperm neck in the mutant. Severe annulus, fibrous sheath, and outer dense fibre abnormalities were also detected in sperm lacking CEP76. Finally, we identified that CEP76 dictates annulus positioning and structure. This study suggests CEP76 as a male germ cell transition zone protein and adds further evidence to the hypothesis that the spermatid transition zone and annulus are part of the same functional structure.


Asunto(s)
Infertilidad Masculina , Cola del Espermatozoide , Humanos , Masculino , Cola del Espermatozoide/metabolismo , Motilidad Espermática/genética , Semen , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Mutación/genética
4.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014244

RESUMEN

Dynein complexes are large, multi-unit assemblies involved in many biological processes including male fertility via their critical roles in protein transport and axoneme motility. Previously we identified a pathogenic variant in the dynein gene AXDND1 in an infertile man. Subsequently we identified an additional four potentially compound heterozygous variants of unknown significance in AXDND1 in two additional infertile men. We thus tested the role of AXDND1 in mammalian male fertility by generating a knockout mouse model. Axdnd1-/- males were sterile at all ages but could undergo one round of histologically complete spermatogenesis. Subsequently, a progressive imbalance of spermatogonial commitment to spermatogenesis over self-renewal occurred, ultimately leading to catastrophic germ cell loss, loss of blood-testis barrier patency and immune cell infiltration. Sperm produced during the first wave of spermatogenesis were immotile due to abnormal axoneme structure, including the presence of ectopic vesicles and abnormalities in outer dense fibres and microtubule doublet structures. Sperm output was additionally compromised by a severe spermiation defect and abnormal sperm individualisation. Collectively, our data highlight the essential roles of AXDND1 as a regulator of spermatogonial commitment to spermatogenesis and during the processes of spermiogenesis where it is essential for sperm tail development, release and motility.

5.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37882691

RESUMEN

Katanins, a class of microtubule-severing enzymes, are potent M-phase regulators in oocytes and somatic cells. How the complex and evolutionarily crucial, male mammalian meiotic spindle is sculpted remains unknown. Here, using multiple single and double gene knockout mice, we reveal that the canonical katanin A-subunit KATNA1 and its close paralogue KATNAL1 together execute multiple aspects of meiosis. We show KATNA1 and KATNAL1 collectively regulate the male meiotic spindle, cytokinesis and midbody abscission, in addition to diverse spermatid remodelling events, including Golgi organisation, and acrosome and manchette formation. We also define KATNAL1-specific roles in sperm flagellum development, manchette regulation and sperm-epithelial disengagement. Finally, using proteomic approaches, we define the KATNA1, KATNAL1 and KATNB1 mammalian testis interactome, which includes a network of cytoskeletal and vesicle trafficking proteins. Collectively, we reveal that the presence of multiple katanin A-subunit paralogs in mammalian spermatogenesis allows for 'customised cutting' via neofunctionalisation and protective buffering via gene redundancy.


Asunto(s)
Katanina , Microtúbulos , Proteómica , Animales , Masculino , Ratones , Fertilidad/genética , Katanina/genética , Meiosis/genética , Microtúbulos/metabolismo , Semen/metabolismo , Espermatogénesis/genética
6.
Cell Genom ; 3(8): 100349, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37601968

RESUMEN

Meiotic crossovers are required for accurate chromosome segregation and producing new allelic combinations. Meiotic crossover numbers are tightly regulated within a narrow range, despite an excess of initiating DNA double-strand breaks. Here, we reveal the tumor suppressor FANCM as a meiotic anti-crossover factor in mammals. We use unique large-scale crossover analyses with both single-gamete sequencing and pedigree-based bulk-sequencing datasets to identify a genome-wide increase in crossover frequencies in Fancm-deficient mice. Gametogenesis is heavily perturbed in Fancm loss-of-function mice, which is consistent with the reproductive defects reported in humans with biallelic FANCM mutations. A portion of the gametogenesis defects can be attributed to the cGAS-STING pathway after birth. Despite the gametogenesis phenotypes in Fancm mutants, both sexes are capable of producing offspring. We propose that the anti-crossover function and role in gametogenesis of Fancm are separable and will inform diagnostic pathways for human genomic instability disorders.

7.
Development ; 150(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36971361

RESUMEN

The development and function of male gametes is dependent on a dynamic microtubule network, yet how this is regulated remains poorly understood. We have recently shown that microtubule severing, via the action of the meiotic AAA ATPase protein clade, plays a crucial role in this process. Here, we sought to elucidate the roles of spastin, an as-yet-unexplored member of this clade in spermatogenesis. Using a SpastKO/KO mouse model, we reveal that spastin loss resulted in a complete loss of functional germ cells. Spastin plays a crucial role in the assembly and function of the male meiotic spindle. Consistent with meiotic failure, round spermatid nuclei were enlarged, indicating aneuploidy, but were still able to enter spermiogenesis. During spermiogenesis, we observed extreme abnormalities in manchette structure, acrosome biogenesis and, commonly, a catastrophic loss of nuclear integrity. This work defines an essential role for spastin in regulating microtubule dynamics during spermatogenesis, and is of potential relevance to individuals carrying spastin variants and to the medically assisted reproductive technology industry.


Asunto(s)
Acrosoma , Microtúbulos , Animales , Ratones , Masculino , Espastina/genética , Acrosoma/metabolismo , Microtúbulos/metabolismo , Espermatogénesis/genética , Meiosis/genética
8.
Cells ; 12(4)2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36831314

RESUMEN

A common herbicide, atrazine, is associated with poor health. Atrazine acts as an endocrine disruptor at supra-environmental levels. Little research, however, has been conducted regarding chronic exposure to environmental atrazine concentrations across generations. This study utilized comprehensive endpoint measures to investigate the effects of chronic exposure to a conservative atrazine concentration (0.02 ng/mL), measured in Australian waterways, on male mice fertility across two generations. Mice were exposed through the maternal line, from the pre-conception period and through the F1 and F2 generations until three or six months of age. Atrazine did not impact sperm function, testicular morphology nor germ cell parameters but did alter the expression of steroidogenic genes in the F1, down-regulating the expression of Cyp17a1 (Cytochrome P450 family 17, subfamily A member 1; p = 0.0008) and Ddx4 (DEAD-box helicase 4; p = 0.007), and up-regulating the expression of Star (Steroidogenic acute regulatory protein; p = 0.017). In the F2, atrazine induced up-regulation in the expression of Star (p = 0.016). The current study demonstrates that chronic exposure to an environmentally relevant atrazine concentration perturbs testicular steroid-associated gene expression that varies across generations. Future studies through the paternal and combined parental lineages should be undertaken to further elucidate the multigenerational effects of atrazine on male fertility.


Asunto(s)
Atrazina , Herbicidas , Masculino , Ratones , Animales , Atrazina/farmacología , Australia , Semen , Herbicidas/farmacología , Testículo
9.
Dev Biol ; 490: 66-72, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35850260

RESUMEN

Male infertility is a common condition affecting at least 7% of men worldwide and is often genetic in origin. Using whole exome sequencing, we recently discovered three hemizygous, likely damaging variants in DDB1- and CUL4-associated factor 12-like protein 1 (DCAF12L1) in men with azoospermia. DCAF12L1 is located on the X-chromosome and as identified by single cell sequencing studies, its expression is enriched in human testes and specifically in Sertoli cells and spermatogonia. However, very little is known about the role of DCAF12L1 in spermatogenesis, thus we generated a knockout mouse model to further explore the role of DCAF12L1 in male fertility. Knockout mice were generated using CRISPR/Cas9 technology to remove the entire coding region of Dcaf12l1 and were assessed for fertility over a broad range of ages (2-8 months of age). Despite outstanding genetic evidence in men, loss of DCAF12L1 had no discernible impact on male fertility in mice, as highlighted by breeding trials, histological assessment of the testis and epididymis, daily sperm production and evaluation of sperm motility using computer assisted methods. This disparity is likely due to the parallel evolution, and subsequent divergence, of DCAF12 family members in mice and men or the presence of compounding environmental factors in men.


Asunto(s)
Fertilidad , Infertilidad Masculina , Testículo , Animales , Humanos , Masculino , Ratones , Factor XII/metabolismo , Fertilidad/genética , Infertilidad Masculina/genética , Ratones Noqueados , Motilidad Espermática/genética , Espermatogénesis/genética
10.
Dev Biol ; 489: 55-61, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35679955

RESUMEN

BACKGROUND: Thousands of genes are expressed during spermatogenesis and male infertility has a strong genetic component. Within this study, we focus on the role of Zfr2 in male fertility, a gene previously implicated in human male fertility. To date, very little is known about the role of ZFR2 in either humans or mice. To this end, the requirement for ZFR2 in male fertility was assessed using a knockout mouse model. RESULTS: Zfr2 was found to be expressed in the testes of both humans and mice. Deletion of Zfr2 was achieved via removal of exon 2 using CRISPR-Cas9 methods. The absence of Zfr2 did not result in a reduction in any fertility parameters assessed. Knockout males were capable of fostering litter sizes equal to wild type males, and there were no effects of Zfr2 knockout on sperm number or motility. We note Zfr2 knockout females were also fertile. CONCLUSIONS: The absence of Zfr2 alone is not sufficient to cause a reduction in male fertility in mice.


Asunto(s)
Infertilidad Masculina , Semen , Animales , Femenino , Masculino , Ratones , Fertilidad/genética , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Ratones Noqueados , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Semen/metabolismo , Motilidad Espermática/genética , Espermatogénesis/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Dedos de Zinc
11.
Endocrinology ; 163(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35022746

RESUMEN

Testicular-derived inhibin B (α/ß B dimers) acts in an endocrine manner to suppress pituitary production of follicle-stimulating hormone (FSH), by blocking the actions of activins (ß A/B/ß A/B dimers). Previously, we identified a homozygous genetic variant (c.1079T>C:p.Met360Thr) arising from uniparental disomy of chromosome 2 in the INHBB gene (ß B-subunit of inhibin B and activin B) in a man suffering from infertility (azoospermia). In this study, we aimed to test the causality of the p.Met360Thr variant in INHBB and testis function. Here, we used CRISPR/Cas9 technology to generate InhbbM364T/M364T mice, where mouse INHBB p.Met364 corresponds with human p.Met360. Surprisingly, we found that the testes of male InhbbM364T/M364T mutant mice were significantly larger compared with those of aged-matched wildtype littermates at 12 and 24 weeks of age. This was attributed to a significant increase in Sertoli cell and round spermatid number and, consequently, seminiferous tubule area in InhbbM364T/M364T males compared to wildtype males. Despite this testis phenotype, male InhbbM364T/M364T mutant mice retained normal fertility. Serum hormone analyses, however, indicated that the InhbbM364T variant resulted in reduced circulating levels of activin B but did not affect FSH production. We also examined the effect of this p.Met360Thr and an additional INHBB variant (c.314C>T: p.Thr105Met) found in another infertile man on inhibin B and activin B in vitro biosynthesis. We found that both INHBB variants resulted in a significant disruption to activin B in vitro biosynthesis. Together, this analysis supports that INHBB variants that limit activin B production have consequences for testis composition in males.


Asunto(s)
Infertilidad Masculina/genética , Subunidades beta de Inhibinas/genética , Subunidades beta de Inhibinas/fisiología , Mutación , Recuento de Espermatozoides , Testículo/fisiopatología , Activinas/biosíntesis , Activinas/genética , Animales , Azoospermia/genética , Proteína 9 Asociada a CRISPR , Hormona Folículo Estimulante/metabolismo , Humanos , Infertilidad Masculina/fisiopatología , Inhibinas/biosíntesis , Inhibinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Células de Sertoli , Espermatogénesis/genética , Espermatogonias , Testículo/química , Testículo/citología
12.
Development ; 148(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34822718

RESUMEN

Katanin microtubule-severing enzymes are crucial executers of microtubule regulation. Here, we have created an allelic loss-of-function series of the katanin regulatory B-subunit KATNB1 in mice. We reveal that KATNB1 is the master regulator of all katanin enzymatic A-subunits during mammalian spermatogenesis, wherein it is required to maintain katanin A-subunit abundance. Our data shows that complete loss of KATNB1 from germ cells is incompatible with sperm production, and we reveal multiple new spermatogenesis functions for KATNB1, including essential roles in male meiosis, acrosome formation, sperm tail assembly, regulation of both the Sertoli and germ cell cytoskeletons during sperm nuclear remodelling, and maintenance of seminiferous epithelium integrity. Collectively, our findings reveal that katanins are able to differentially regulate almost all key microtubule-based structures during mammalian male germ cell development, through the complexing of one master controller, KATNB1, with a 'toolbox' of neofunctionalised katanin A-subunits.


Asunto(s)
Haploidia , Katanina/genética , Meiosis/genética , Espermatogénesis/genética , Espermatozoides/crecimiento & desarrollo , Acrosoma/metabolismo , Animales , Citoesqueleto/genética , Células Germinativas/citología , Células Germinativas/crecimiento & desarrollo , Masculino , Ratones , Microtúbulos/genética , Células de Sertoli/citología , Cola del Espermatozoide/metabolismo , Espermatozoides/metabolismo
13.
Mol Hum Reprod ; 27(11)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34590701

RESUMEN

PIWI-interacting small RNAs (piRNAs) maintain genome stability in animal germ cells, with a predominant role in silencing transposable elements. Mutations in the piRNA pathway in the mouse uniformly lead to failed spermatogenesis and male sterility. By contrast, mutant females are fertile. In keeping with this paradigm, we previously reported male sterility and female fertility associated with loss of the enzyme HENMT1, which is responsible for stabilising piRNAs through the catalysation of 3'-terminal 2'-O-methylation. However, the Henmt1 mutant females were poor breeders, suggesting they could be subfertile. Therefore, we investigated oogenesis and female fertility in these mice in greater detail. Here, we show that mutant females indeed have a 3- to 4-fold reduction in follicle number and reduced litter sizes. In addition, meiosis-II mutant oocytes display various spindle abnormalities and have a dramatically altered transcriptome which includes a down-regulation of transcripts required for microtubule function. This down-regulation could explain the spindle defects observed with consequent reductions in litter size. We suggest these various effects on oogenesis could be exacerbated by asynapsis, an apparently universal feature of piRNA mutants of both sexes. Our findings reveal that loss of the piRNA pathway in females has significant functional consequences.


Asunto(s)
Fertilidad , Infertilidad Femenina/enzimología , Meiosis , Metiltransferasas/metabolismo , Oocitos/enzimología , Oogénesis , ARN Interferente Pequeño/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Infertilidad Femenina/genética , Infertilidad Femenina/fisiopatología , Metiltransferasas/genética , Ratones , ARN Interferente Pequeño/genética , Transcriptoma
14.
Front Cell Dev Biol ; 9: 672592, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968944

RESUMEN

The analysis of spermatozoa morphology is fundamental to understand male fertility and the etiology of infertility. Traditionally scanning electron microscopy (SEM) has been used to define surface topology. Recently, however, it has become a critical tool for three-dimensional analysis of internal cellular ultrastructure. Modern SEM provides nanometer-scale resolution, but the meaningfulness of such information is proportional to the quality of the sample preservation. In this study, we demonstrate that sperm quickly and robustly adhere to gold-coated surfaces. Leveraging this property, we developed three step-by-step protocols fulfilling different needs for sperm imaging: chemically fixed monolayers for SEM examination of the external morphology, and two high-pressure freezing-based protocols for fast SEM examination of full cell internal morphology and focused ion-beam SEM tomography. These analyses allow previously unappreciated insights into mouse sperm ultrastructure, including the identification of novel structures within the fibrous sheath and domain-specific interactions between the plasma membrane and exosome-like structures.

15.
Dev Dyn ; 250(7): 922-931, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33442887

RESUMEN

BACKGROUND: Male infertility is a prevalent clinical presentation for which there is likely a strong genetic component due to the thousands of genes required for spermatogenesis. Within this study we investigated the role of the gene Scrn1 in male fertility. Scrn1 is preferentially expressed in XY gonads during the period of sex determination and in adult Sertoli cells based on single cell RNA sequencing. We investigated the expression of Scrn1 in juvenile and adult tissues and generated a knockout mouse model to test its role in male fertility. RESULTS: Scrn1 was expressed at all ages examined in the post-natal testis; however, its expression peaked at postnatal days 7-14 and SCRN1 protein was clearly localized to Sertoli cells. Scrn1 deletion was achieved via removal of exon 3, and its loss had no effect on male fertility or sex determination. Knockout mice were capable of siring litters of equal size to wild type counterparts and generated equal numbers of sperm with comparable motility and morphology characteristics. CONCLUSIONS: Scrn1 was found to be dispensable for male fertility, but this study identifies SCRN1 as a novel marker of the Sertoli cell cytoplasm.


Asunto(s)
Fertilidad/genética , Proteínas del Tejido Nervioso/metabolismo , Células de Sertoli/metabolismo , Animales , Embrión de Mamíferos , Femenino , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Embarazo , Células de Sertoli/fisiología , Espermatogénesis/genética , Testículo/metabolismo
16.
G3 (Bethesda) ; 10(12): 4449-4457, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33055224

RESUMEN

Globozoospermia is a rare form of male infertility where men produce round-headed sperm that are incapable of fertilizing an oocyte naturally. In a previous study where we undertook a whole exome screen to define novel genetic causes of globozoospermia, we identified homozygous mutations in the gene PDCD2L Two brothers carried a p.(Leu225Val) variant predicted to introduce a novel splice donor site, thus presenting PDCD2L as a potential regulator of male fertility. In this study, we generated a Pdcd2l knockout mouse to test its role in male fertility. Contrary to the phenotype predicted from its testis-enriched expression pattern, Pdcd2l null mice died during embryogenesis. Specifically, we identified that Pdcd2l is essential for post-implantation embryonic development. Pdcd2l-/- embryos were resorbed at embryonic days 12.5-17.5 and no knockout pups were born, while adult heterozygous Pdcd2l males had comparable fertility to wildtype males. To specifically investigate the role of PDCD2L in germ cells, we employed Drosophila melanogaster as a model system. Consistent with the mouse data, global knockdown of trus, the fly ortholog of PDCD2L, resulted in lethality in flies at the third instar larval stage. However, germ cell-specific knockdown with two germ cell drivers did not affect male fertility. Collectively, these data suggest that PDCD2L is not essential for male fertility. By contrast, our results demonstrate an evolutionarily conserved role of PDCD2L in development.


Asunto(s)
Desarrollo Embrionario , Infertilidad Masculina , Adulto , Animales , Apoptosis , Proteínas Portadoras , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Femenino , Humanos , Infertilidad Masculina/genética , Masculino , Ratones , Embarazo , Espermatozoides
17.
Endocr Relat Cancer ; 27(7): 415-430, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32357309

RESUMEN

Identifying the factors stimulating prostate cancer cells migration and invasion has the potential to bring new therapeutic targets to the clinic. Cysteine-rich secretory protein 3 (CRISP3) is one of the most highly upregulated proteins during the transition of a healthy human prostatic epithelium to prostate cancer. Here we show using a genetically engineered mouse model of prostate cancer that CRISP3 production greatly facilitates disease progression from carcinoma in situ to invasive prostate cancer in vivo. This interpretation was confirmed using both human and mouse prostate cancer cell lines, which showed that exposure to CRISP3 enhanced cell motility and invasion. Further, using mass spectrometry, we show that CRISP3 induces changes in abundance of a subset of cell-cell adhesion proteins, including LASP1 and TJP1 both in vivo and in vitro. Collectively, these data identify CRISP3 as being pro-tumorigenic in the prostate and validate it as a potential target for therapeutic intervention.


Asunto(s)
Neoplasias de la Próstata/genética , Proteínas y Péptidos Salivales/metabolismo , Proteínas de Plasma Seminal/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Genotipo , Humanos , Masculino , Ratones , Ratones Noqueados , Invasividad Neoplásica
18.
BMC Biol ; 17(1): 86, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31672133

RESUMEN

BACKGROUND: The sperm protein IZUMO1 (Izumo sperm-egg fusion 1) and its recently identified binding partner on the oolemma, IZUMO1R, are among the first ligand-receptor pairs shown to be essential for gamete recognition and adhesion. However, the IZUMO1-IZUMO1R interaction does not appear to be directly responsible for promoting the fusion of the gamete membranes, suggesting that this critical phase of the fertilization cascade requires the concerted action of alternative fusogenic machinery. It has therefore been proposed that IZUMO1 may play a secondary role in the organization and/or stabilization of higher-order heteromeric complexes in spermatozoa that are required for membrane fusion. RESULTS: Here, we show that fertilization-competent (acrosome reacted) mouse spermatozoa harbor several high molecular weight protein complexes, a subset of which are readily able to adhere to solubilized oolemmal proteins. At least two of these complexes contain IZUMO1 in partnership with GLI pathogenesis-related 1 like 1 (GLIPR1L1). This interaction is associated with lipid rafts and is dynamically remodeled upon the induction of acrosomal exocytosis in preparation for sperm adhesion to the oolemma. Accordingly, the selective ablation of GLIPR1L1 leads to compromised sperm function characterized by a reduced ability to undergo the acrosome reaction and a failure of IZUMO1 redistribution. CONCLUSIONS: Collectively, this study characterizes multimeric protein complexes on the sperm surface and identifies GLIPRL1L1 as a physiologically relevant regulator of IZUMO1 function and the fertilization process.


Asunto(s)
Fertilización/genética , Glicoproteínas/genética , Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Espermatozoides/fisiología , Animales , Glicoproteínas/metabolismo , Inmunoglobulinas/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones
19.
Endocrinology ; 160(11): 2573-2586, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504408

RESUMEN

Ciliated bronchial epithelium 1 (CBE1) is a microtubule-associated protein localized to the manchette and developing flagellum during spermiogenesis and is associated with sperm maturation arrest in humans. It was hypothesized that CBE1 functions in microtubule-mediated transport mechanisms and sperm tail formation. To test this hypothesis, we analyzed Cbe1 expression and localization during spermiogenesis, and in mouse inner medullary collecting duct-3 (IMCD3) cells as a model of ciliogenesis. Furthermore, we generated and analyzed the fertility of a Cbe1 mutant mouse line. Mice containing a homozygous deletion in the long forms of Cbe1 were born at a lower frequency than predicted by Mendelian inheritance; however, adult male mice were fertile. An in-depth analysis of the Cbe1 gene revealed alternative transcript variants, which were not affected by the exon 2 mutation. To assess whether short variants compensate for the loss of long variants, exons 2 and 4 (which affect all variants) were individually mutated in IMCD3 cells and the effects on cell proliferation and ciliogenesis were analyzed. In wild-type IMCD3 cells, both variants were upregulated during cilia assembly. CBE1 protein was not a structural component of cilia; rather, CBE1 localized to the mitochondria and the contractile ring of dividing IMCD3 cells. Although IMCD3 cells carrying the mutation in long variants showed no phenotypic alterations, the mutation in exon 4 resulted in a significantly decreased proliferation rate. This study reveals that long isoforms of CBE1 are not essential for male fertility. Data, however, suggest that CBE1 is associated with intramanchette transport and midpiece formation of the sperm tail.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Espermátides/metabolismo , Espermatogénesis , Animales , División Celular , Línea Celular , Proteínas del Citoesqueleto/genética , Fertilidad , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Isoformas de Proteínas/metabolismo
20.
Endocrinology ; 160(4): 915-924, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30759213

RESUMEN

The cysteine-rich secretory proteins (CRISPs) are a group of proteins that show a pronounced expression biased to the male reproductive tract. Although sperm encounter CRISPs at virtually all phases of sperm development and maturation, CRISP2 is the sole CRISP produced during spermatogenesis, wherein it is incorporated into the developing sperm head and tail. In this study we tested the necessity for CRISP2 in male fertility using Crisp2 loss-of-function mouse models. In doing so, we revealed a role for CRISP2 in establishing the ability of sperm to undergo the acrosome reaction and in establishing a normal flagellum waveform. Crisp2-deficient sperm possess a stiff midpiece and are thus unable to manifest the rapid form of progressive motility seen in wild type sperm. As a consequence, Crisp2-deficient males are subfertile. Furthermore, a yeast two-hybrid screen and immunoprecipitation studies reveal that CRISP2 can bind to the CATSPER1 subunit of the Catsper ion channel, which is necessary for normal sperm motility. Collectively, these data define CRISP2 as a determinant of male fertility and explain previous clinical associations between human CRISP2 expression and fertility.


Asunto(s)
Fertilidad/fisiología , Infertilidad Masculina/metabolismo , Proteínas de la Membrana/metabolismo , Espermatogénesis/fisiología , Espermatozoides/metabolismo , Reacción Acrosómica/fisiología , Animales , Moléculas de Adhesión Celular , Infertilidad Masculina/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Motilidad Espermática/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...