Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Ther ; 238: 108177, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35351463

RESUMEN

Capsaicin (trans-8-methyl-N-vanillyl-6-noneamide) is a hydrophobic, lipophilic vanilloid phytochemical abundantly found in chili peppers and pepper extracts. Several convergent studies show that capsaicin displays robust cancer activity, suppressing the growth, angiogenesis and metastasis of several human cancers. Despite its potent cancer-suppressing activity, the clinical applications of capsaicin as a viable anti-cancer drug have remained problematic due to its poor bioavailability and aqueous solubility properties. In addition, the administration of capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, nausea and diarrhea and vomiting. All these hurdles may be circumvented by encapsulation of capsaicin in sustained release drug delivery systems. Most of the capsaicin-based the sustained release drugs have been tested for their pain-relieving activity. Only a few of these formulations have been investigated as anti-cancer agents. The present review describes the physicochemical properties, bioavailability, and anti-cancer activity of capsaicin-sustained release agents. The asset of such continuous release capsaicin formulations is that they display better solubility, stability, bioavailability, and growth-suppressive activity than the free drug. The encapsulation of capsaicin in sustained release carriers minimizes the adverse side effects of capsaicin. In summary, these capsaicin-based sustained release drug delivery systems have the potential to function as novel chemotherapies, unique diagnostic imaging probes and innovative chemosensitization agents in human cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/efectos adversos , Capsaicina/farmacología , Capsaicina/uso terapéutico , Preparaciones de Acción Retardada/uso terapéutico , Humanos , Neoplasias/inducido químicamente , Neoplasias/tratamiento farmacológico , Dolor/tratamiento farmacológico
2.
Bio Protoc ; 12(4): e4320, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35340295

RESUMEN

The invasion of tumor cells into the neighboring blood vessels and lymph nodes is a vital step for distant metastasis. Traditionally, the invasive activity of growth factors (or the anti-invasive activity of drugs) is measured with the Boyden chamber assay. However, this assay has a few disadvantages like poor physiological relevance of transwell inserts and an inability to control chemokine gradients. The Boyden chamber assay is one of the most prevalent methods to measure the invasion of cancer cells. It would be advantageous to develop another assay that could validate the results of the Boyden chamber assay. With this in mind, our laboratory developed the spherical invasion assay (SIA) to measure the pro-invasive activity of human cancer cells. The SIA also circumvents some of the drawbacks of the Boyden chamber assay. The present manuscript measures the anti-invasive activity of the Src kinase inhibitor PP2 in A549 human non-small cell lung carcinoma (NSCLC) cells using the SIA. The SIA protocol is comprised of two steps. In the first step, A549 human NSCLC cells (treated or not with PP2) were mixed with Matrigel and seeded in the middle of an eight-well chamber slide. After 24 h, a second layer of Matrigel was overlaid over the first layer. Over the course of the next 24 h, the A549 cells invade from the primary to the secondary Matrigel layers. Subsequently, the cells are visualized by phase-contrast microscopy and the images obtained are quantified using ImageJ to calculate the anti-invasive activity of PP2 in A549 cells. The results of the SIA correlate well with Boyden chamber assays. The SIA may be adapted for multiple experimental designs, such as drug screening (to combat invasion and metastasis), measuring the pro-invasive activity of growth factors, and elucidating the signaling pathways underlying the pro-invasive/anti-invasive activity of biological modifiers. Graphic abstract: Diagrammatic illustration of the spherical invasion assay ( Hurley et al., 2017 ) . A. The first layer is comprised of human cancer cells mixed in a 1:1 suspension with Phenol Red containing Matrigel (represented as LAYER 1 in the figure). After 24 h, the cancer cells grow and extend up to the boundary of this first layer. B. A second layer of 1:1 solution Phenol Red-free Matrigel, in Phenol Red-free RPMI (represented as LAYER 2 in the figure) is added on top of the first Matrigel spot. The cells are incubated for 24 h at 37°C. C. Over these 24 h, the cancer cells invade from the primary layer into the secondary Matrigel layer. The chamber slides are observed by phase-contrast microscopy. D. A representative photograph of the images obtained by the SIA is shown. The black arrow indicates the cancer cells invading into the second layer of Matrigel. The dotted line represents the interface between the two layers. The distance to which the cells have traveled (into the secondary Matrigel layer) is measured at ten sites (for each photograph) in a randomized double-blind fashion by three independent observers, using NIH ImageJ Version 1.47. This process is repeated for three separate photographic fields per sample.

3.
Adv Cancer Res ; 152: 1-66, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34353435

RESUMEN

The enzyme acetylcholinesterase (AChE) is a serine hydrolase whose primary function is to degrade acetylcholine (ACh) and terminate neurotransmission. Apart from its role in synaptic transmission, AChE has several "non-classical" functions in non-neuronal cells. AChE is involved in cellular growth, apoptosis, drug resistance pathways, response to stress signals and inflammation. The observation that the functional activity of AChE is altered in human tumors (relative to adjacent matched normal tissue) has raised several intriguing questions about its role in the pathophysiology of human cancers. Published reports show that AChE is a vital regulator of oncogenic signaling pathways involving proliferation, differentiation, cell-cell adhesion, migration, invasion and metastasis of primary tumors. The objective of this book chapter is to provide a comprehensive overview of the contributions of the AChE-signaling pathway in the growth of progression of human cancers. The AChE isoforms, AChE-T, AChE-R and AChE-S are robustly expressed in human cancer cell lines as well in human tumors (isolated from patients). Traditionally, AChE-modulators have been used in the clinic for treatment of neurodegenerative disorders. Emerging studies reveal that these drugs could be repurposed for the treatment of human cancers. The discovery of potent, selective AChE ligands will provide new knowledge about AChE-regulatory pathways in human cancers and foster the hope of novel therapies for this disease.


Asunto(s)
Acetilcolinesterasa , Neoplasias , Acetilcolinesterasa/genética , Apoptosis , Proliferación Celular , Humanos , Oncogenes
4.
Biomed Pharmacother ; 118: 109317, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31404777

RESUMEN

Cancer progression is a complex multistep process comprising of angiogenesis of the primary tumor, its invasion into the surrounding stroma and its migration to distant organs to produce metastases. Nutritional compounds of the "capsaicinoid" family regulate angiogenesis, invasion and metastasis of tumors. Capsaicinoids display robust anti-angiogenic activity in both cell culture and mice models. However, conflicting reports exist about the effect of capsaicinoids on invasion of metastasis of cancers. While some published reports have described an anti-invasive and anti-metastatic role for capsaicinoids, others have argued that capsaicinoids stimulate invasion and metastasis of cancers. The present review article summarizes these findings involving the bioactivity of capsaicin in angiogenesis, invasion and metastasis of cancer. A survey of literature indicate that they are several articles summarizing the growth-inhibitory activity of capsaicinoids but few describe its effects on angiogenesis, invasion and metastasis in detail. Our review article fills this gap of knowledge. The discovery of a second generation of natural and synthetic capsaicin analogs (with anti-tumor activity) will pave the way to improved strategies for the treatment of several human cancers.


Asunto(s)
Capsaicina/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Animales , Capsaicina/química , Capsaicina/farmacología , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/irrigación sanguínea , Transducción de Señal
5.
Adv Cancer Res ; 144: 263-298, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31349900

RESUMEN

Cytotoxic chemotherapy is the mainstay of cancer treatment. Conventional chemotherapeutic agents do not distinguish between normal and neoplastic cells. This leads to severe toxic side effects, which may necessitate the discontinuation of treatment in some patients. Recent research has identified key molecular events in the initiation and progression of cancer, promoting the design of targeted therapies to selectively kill tumor cells while sparing normal cells. Although, the side effects of such drugs are typically milder than conventional chemotherapies, some off-target effects still occur. Another serious challenge with all chemotherapies is the acquisition of chemoresistance upon prolonged exposure to the drug. Therefore, identifying supplementary agents that sensitize tumor cells to chemotherapy-induced apoptosis and help minimize drug resistance would be valuable for improving patient tolerance and response to chemotherapy. The use of effective supplementary agents provides a twofold advantage in combination with standard chemotherapy. First, by augmenting the activity of the chemotherapeutic drug it can lower the dose needed to kill tumor cells and decrease the incidence and severity of treatment-limiting side effects. Second, adjuvant therapies that lower the effective dose of chemotherapy may delay/prevent the development of chemoresistance in tumors. Capsaicinoids, a major class of phytochemical compounds isolated from chili peppers, have been shown to improve the efficacy of several anti-cancer drugs in cell culture and animal models. The present chapter summarizes the current knowledge about the chemosensitizing activity of capsaicinoids with conventional and targeted chemotherapeutic drugs, highlighting the potential use of capsaicinoids in novel combination therapies to improve the therapeutic indices of conventional and targeted chemotherapeutic drugs in human cancers.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Antipruriginosos/farmacología , Capsaicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antipruriginosos/administración & dosificación , Capsaicina/administración & dosificación , Capsaicina/análogos & derivados , Interacciones Farmacológicas , Sinergismo Farmacológico , Humanos , Neoplasias/patología
6.
Pharmacol Ther ; 194: 222-254, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30291908

RESUMEN

The neurotransmitter acetylcholine (ACh) acts as an autocrine growth factor for human lung cancer. Several lines of evidence show that lung cancer cells express all of the proteins required for the uptake of choline (choline transporter 1, choline transporter-like proteins) synthesis of ACh (choline acetyltransferase, carnitine acetyltransferase), transport of ACh (vesicular acetylcholine transport, OCTs, OCTNs) and degradation of ACh (acetylcholinesterase, butyrylcholinesterase). The released ACh binds back to nicotinic (nAChRs) and muscarinic receptors on lung cancer cells to accelerate their proliferation, migration and invasion. Out of all components of the cholinergic pathway, the nAChR-signaling has been studied the most intensely. The reason for this trend is due to genome-wide data studies showing that nicotinic receptor subtypes are involved in lung cancer risk, the relationship between cigarette smoke and lung cancer risk as well as the rising popularity of electronic cigarettes considered by many as a "safe" alternative to smoking. There are a small number of articles which review the contribution of the other cholinergic proteins in the pathophysiology of lung cancer. The primary objective of this review article is to discuss the function of the acetylcholine-signaling proteins in the progression of lung cancer. The investigation of the role of cholinergic network in lung cancer will pave the way to novel molecular targets and drugs in this lethal malignancy.


Asunto(s)
Acetilcolina/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antígenos Ly/metabolismo , Colinesterasas/metabolismo , Progresión de la Enfermedad , Humanos , Neoplasias Pulmonares/patología , Proteínas de Transporte de Membrana/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Transducción de Señal , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...