Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NeuroRehabilitation ; 53(2): 209-220, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638454

RESUMEN

BACKGROUND: Transcranial direct current stimulation (tDCS) may provide a potential therapy for cognitive deficits caused by traumatic brain injury (TBI), yet its efficacy and mechanisms of action are still uncertain. OBJECTIVE: We hypothesized that anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC) would boost the influence of a cognitive training regimen in a mild-to-moderate TBI (mmTBI) sample. Cognitive enhancement was measured by examining event-related potentials (ERPs) during cognitive control tasks from pre- to post-treatment. METHODS: Thirty-four participants with mmTBI underwent ten sessions of cognitive training with active (n = 17) or sham (n = 17) anodal tDCS to the left DLPFC. ERPs were assessed during performance of an auditory oddball (3AOB), N-back, and dot pattern expectancy (DPX) task before and after treatment. RESULTS: P3b amplitudes significantly decreased from baseline to post-treatment testing, regardless of tDCS condition, in the N-back task. The active tDCS group demonstrated a significantly increased P3a amplitude in the DPX task. No statistically significant stimulation effects were seen during the 3AOB and N-back tasks. CONCLUSION: Active anodal tDCS paired with cognitive training led to increases in P3a amplitudes in the DPX, inferring increased cognitive control. P3b decreased in the N-back task demonstrating the effects of cognitive training. These dissociated P3 findings suggest separate mechanisms invoked by different neuroplasticity-inducing paradigms (stimulation versus training) in brain networks that support executive functioning.

2.
Front Hum Neurosci ; 16: 1026639, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36310843

RESUMEN

Background: Persistent posttraumatic symptoms (PPS) may manifest after a mild-moderate traumatic brain injury (mmTBI) even when standard brain imaging appears normal. Transcranial direct current stimulation (tDCS) represents a promising treatment that may ameliorate pathophysiological processes contributing to PPS. Objective/Hypothesis: We hypothesized that in a mmTBI population, active tDCS combined with training would result in greater improvement in executive functions and post-TBI cognitive symptoms and increased resting state connectivity of the stimulated region, i.e., left dorsolateral prefrontal cortex (DLPFC) compared to control tDCS. Methods: Thirty-four subjects with mmTBI underwent baseline assessments of demographics, symptoms, and cognitive function as well as resting state functional magnetic resonance imaging (rsfMRI) in a subset of patients (n = 24). Primary outcome measures included NIH EXAMINER composite scores, and the Neurobehavioral Symptom Inventory (NSI). All participants received 10 daily sessions of 30 min of executive function training coupled with active or control tDCS (2 mA, anode F3, cathode right deltoid). Imaging and assessments were re-obtained after the final training session, and assessments were repeated after 1 month. Mixed-models linear regression and repeated measures analyses of variance were calculated for main effects and interactions. Results: Both active and control groups demonstrated improvements in executive function (EXAMINER composite: p < 0.001) and posttraumatic symptoms (NSI cognitive: p = 0.01) from baseline to 1 month. Active anodal tDCS was associated with greater improvements in working memory reaction time compared to control (p = 0.007). Reaction time improvement correlated significantly with the degree of connectivity change between the right DLPFC and the left anterior insula (p = 0.02). Conclusion: Anodal tDCS improved reaction time on an online working memory task in a mmTBI population, and decreased connectivity between executive network and salience network nodes. These findings generate important hypotheses for the mechanism of recovery from PPS after mild-moderate TBI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...