Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(39): 35638-35652, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810698

RESUMEN

Physisorption on hexagonal boron nitride (hBN) gained interest over the years thanks to its properties (chemically and thermally stable, insulating properties, etc.) and similarities to the well-known graphene. A recent study showed flat-on adsorption of several cationic thiacarbocyanine dyes on hBN with a tendency to form weakly coupled H- or I-type aggregates, while a zwitterionic thiacarbocyanine dye rather led to a tilted adsorption. With this in-depth time-resolved study using the TC-SPC technique, we confirm the results proven by adsorption isotherms, atomic force microscopy, and stationary state spectroscopy combined with molecular mechanics simulations and estimation of the corresponding exciton interaction. The absence of a systematic trend for the dependence of the decay times, normalized amplitudes of the decay components, and contribution of different components to the stationary emission spectra upon the emission wavelength observed for all studied dyes and coverages suggests the occurrence of a single emitting species. At low coverage levels, the non-mono-exponential character of the decays was attributed to adsorption on different sites characterized by different intramolecular rotational freedom or energy transfer to nonfluorescent traps or a combination of both. The difference between the decay rates of the four dyes reflects a different density of the nonfluorescent traps. Although the decay time of the unquenched dyes was in the order of magnitude of that of dye monomers in a rigid environment, it is also compatible with weakly coupled aggregates such as proposed earlier based on the stationary spectra. Hence, the adsorption leads to a rigid environment of the dyes, blocking internal conversion. Increasing the concentration of the dye solution from which the adsorption on hBN occurs increases not only the coverage of the hBN surface but also the extent of energy transfer to nonfluorescent traps. For TDC (5,5-dichloro-3-3'-diethyl-9-ethyl-thiacarbocyanine) and TD2 (3-3'-diethyl-9-ethyl-thiacarbocyanine), besides direct energy transfer to traps, exciton hopping between dye dimers followed by energy transfer to these traps occurs, which resulted in a decreasing decay time of the longest decaying component. For all dyes, it was also possible to analyze the fluorescence decays as a stretched exponential as would be expected for energy transfer to randomly distributed traps in a two-dimensional (2D) geometry. This analysis yielded a fluorescence decay time of the unquenched dyes similar to the longest decay time obtained by analysis of the fluorescence decays as a sum of three of four exponentials.

2.
Chem Sci ; 13(46): 13879-13892, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36544721

RESUMEN

The main challenge for acidic water electrolysis is the lack of active and stable oxygen evolution catalysts based on abundant materials, which are globally scalable. Iridium oxide is the only material which is active and stable. However, Ir is extremely rare. While both active materials and stable materials exist, those that are active are usually not stable and vice versa. In this work, we present a new design strategy for activating stable materials originally deemed unsuitable due to a semiconducting nature and wide band gap energy. These stable semiconductors cannot change oxidation state under the relevant reaction conditions. Based on DFT calculations, we find that adding an n-type dopant facilitates oxygen binding on semiconductor surfaces. The binding is, however, strong and prevents further binding or desorption of oxygen. By combining both n-type and p-type dopants, the reactivity can be tuned so that oxygen can be adsorbed and desorbed under reaction conditions. The tuning results from the electrostatic interactions between the dopants as well as between the dopants and the binding site. This concept is experimentally verified on TiO2 by co-substituting with different pairs of n- and p-type dopants. Our findings suggest that the co-substitution approach can be used to activate stable materials, with no intrinsic oxygen evolution activity, to design new catalysts for acid water electrolysis.

3.
J Chem Theory Comput ; 16(8): 5227-5243, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32536160

RESUMEN

We propose a computationally lean, two-stage approach that reliably predicts self-assembly behavior of complex charged molecules on metallic surfaces under electrochemical conditions. Stage one uses ab initio simulations to provide reference data for the energies (evaluated for archetypical configurations) to fit the parameters of a conceptually much simpler and computationally less expensive force field of the molecules: classical, spherical particles, representing the respective atomic entities; a flat and perfectly conducting wall represents the metallic surface. Stage two feeds the energies that emerge from this force field into highly efficient and reliable optimization techniques to identify via energy minimization the ordered ground-state configurations of the molecules. We demonstrate the power of our approach by successfully reproducing, on a semiquantitative level, the intricate supramolecular ordering observed experimentally for PQP+ and ClO4- molecules at an Au(111)-electrolyte interface, including the formation of open-porous, self-host-guest, and stratified bilayer phases as a function of the electric field at the solid-liquid interface. We also discuss the role of the perchlorate ions in the self-assembly process, whose positions could not be identified in the related experimental investigations.

4.
Angew Chem Int Ed Engl ; 59(33): 14049-14053, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32391649

RESUMEN

Reported here is a molecular dipole that self-assembles into highly ordered patterns at the liquid-solid interface, and it can be switched at room temperature between a bright and a dark state at the single-molecule level. Using a scanning tunneling microscope (STM) under suitable bias conditions, binary information can be written at a density of up to 41 Tb cm-2 (256 Tb/in2 ). The written information is stable during reading at room temperature, but it can also be erased at will, instantly, by proper choice of tunneling conditions. DFT calculations indicate that the contrast and switching mechanism originate from the stacking sequence of the molecular dipole, which is reoriented by the electric field between the tip and substrate.

5.
ACS Nano ; 13(5): 5559-5571, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31013051

RESUMEN

A convenient covalent functionalization approach and nanopatterning method of graphite and graphene is developed. In contrast to expectations, electrochemically activated dediazotization of a mixture of two aryl diazonium compounds in aqueous media leads to a spatially inhomogeneous functionalization of graphitic surfaces, creating covalently modified surfaces with quasi-uniform spaced islands of pristine graphite or graphene, coined nanocorrals. Cyclic voltammetry and chronoamperometry approaches are compared. The average diameter (45-130 nm) and surface density (20-125 corrals/µm2) of these nanocorrals are tunable. These chemically modified nanostructured graphitic (CMNG) surfaces are characterized by atomic force microscopy, scanning tunneling microscopy, Raman spectroscopy and microscopy, and X-ray photoelectron spectroscopy. Mechanisms leading to the formation of these CMNG surfaces are discussed. The potential of these surfaces to investigate supramolecular self-assembly and on-surface reactions under nanoconfinement conditions is demonstrated.

6.
J Phys Chem C Nanomater Interfaces ; 121(47): 26424-26431, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29285204

RESUMEN

The rutile TiO2(011) surface exhibits a (2 × 1) reconstruction when prepared by standard techniques in ultrahigh vacuum (UHV). Here we report that a restructuring occurs upon exposing the surface to liquid water at room temperature. The experiment was performed in a dedicated UHV system, equipped for direct and clean transfer of samples between UHV and liquid environment. After exposure to liquid water, an overlayer with a (2 × 1) symmetry was observed containing two dissociated water molecules per unit cell. The two OH groups yield an apparent "c(2 × 1)" symmetry in scanning tunneling microscopy (STM) images. On the basis of STM analysis and density functional theory (DFT) calculations, this overlayer is attributed to dissociated water on top of the unreconstructed (1 × 1) surface. Investigation of possible adsorption structures and analysis of the domain boundaries in this structure provide strong evidence that the original (2 × 1) reconstruction is lifted. Unlike the (2 × 1) reconstruction, the (1 × 1) surface has an appropriate density and symmetry of adsorption sites. The possibility of contaminant-induced restructuring was excluded based on X-ray photoelectron spectroscopy (XPS) and low-energy He+ ion scattering (LEIS) measurements.

7.
Small ; 13(46)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28960791

RESUMEN

Ionic self-assembly of charged molecular building blocks relies on the interplay between long-range electrostatic forces and short-range, often cooperative, supramolecular interactions, yet has been seldom studied in two dimensions at the solid-liquid interface. Here, we demonstrate anion-driven switching of two-dimensional (2D) crystal structure at the Au(111)/octanoic acid interface. Using scanning tunneling microscopy (STM), three organic salts with identical polyaromatic cation (PQPC6+ ) but different anions (perchlorate, anthraquinonedisulfonate, benzenesulfonate) are shown to form distinct, highly ordered self-assembled structures. Reversible switching of the supramolecular arrangement is demonstrated by in situ exchange of the anion on the pre-formed adlayer, by changing the concentration ratio between the incoming and outgoing anion. Density functional theory (DFT) calculations reveal that perchlorate is highly mobile in the adlayer, and corroborate why this anion is only resolved transiently in STM. Surprisingly, the templating effect of the anion persists even where it does not become part of the adlayer 2D fabric, which we ascribe to differences in stabilization of cation conformations by the anion. Our results provide important insight into the structuring of mixed anion-cation adlayers. This is essential in the design of tectons for ionic self-assembled superstructures and biomimetic adaptive materials and valuable also to understand adsorbate-adsorbate interactions in heterogeneous catalysis.

8.
J Phys Chem C Nanomater Interfaces ; 121(36): 19743-19750, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28936277

RESUMEN

Electrochemical surface science of oxides is an emerging field with expected high impact in developing, for instance, rationally designed catalysts. The aim in such catalysts is to replace noble metals by earth-abundant elements, yet without sacrificing activity. Gaining an atomic-level understanding of such systems hinges on the use of experimental surface characterization techniques such as scanning tunneling microscopy (STM), in which tungsten tips have been the most widely used probes, both in vacuum and under electrochemical conditions. Here, we present an in situ STM study with atomic resolution that shows how tungsten(VI) oxide, spontaneously generated at a W STM tip, forms 1D adsorbates on oxide substrates. By comparing the behavior of rutile TiO2(110) and magnetite Fe3O4(001) in aqueous solution, we hypothesize that, below the point of zero charge of the oxide substrate, electrostatics causes water-soluble WO3 to efficiently adsorb and form linear chains in a self-limiting manner up to submonolayer coverage. The 1D oligomers can be manipulated and nanopatterned in situ with a scanning probe tip. As WO3 spontaneously forms under all conditions of potential and pH at the tungsten-aqueous solution interface, this phenomenon also identifies an important caveat regarding the usability of tungsten tips in electrochemical surface science of oxides and other highly adsorptive materials.

9.
Nanoscale ; 9(16): 5188-5193, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28393948

RESUMEN

Altering the chemical reactivity of graphene can offer new opportunities for various applications. Here, we report that monolayers of densely packed n-pentacontane significantly reduce the covalent grafting of aryl radicals to graphitic surfaces. The effect is highly local in nature and on fully covered substrates grafting can occur only at monolayer imperfections such as interdomain borders and vacancy defects. Grafting partially covered substrates primarily results in the covalent modification of uncoated areas.

10.
Nanoscale ; 9(1): 362-368, 2017 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-27924342

RESUMEN

Highly oriented pyrolytic graphite (HOPG) can be covalently grafted with aryl radicals generated via the electrochemical reduction of 3,5-bis-tert-butyl-diazonium cations (3,5-TBD). The structure of the grafted layer and its stability under electrochemical conditions were assessed with electrochemical scanning tunneling microscopy (EC-STM) and cyclic voltammetry (CV). Stable within a wide (>2.5 V) electrochemical window, the grafted species can be locally removed using EC-STM-tip nanolithography. Using dibenzyl viologen as an example, we show that the generated nanocorrals of bare graphitic surface can be used to study nucleation and growth of self-assembled structures under conditions of nanoconfinement and electrochemical potential control.

11.
Nature ; 534(7609): 676-9, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27357755

RESUMEN

When a gecko moves on a ceiling it makes use of adhesion and stiction. Stiction--static friction--is experienced on microscopic and macroscopic scales and is related to adhesion and sliding friction. Although important for most locomotive processes, the concepts of adhesion, stiction and sliding friction are often only empirically correlated. A more detailed understanding of these concepts will, for example, help to improve the design of increasingly smaller devices such as micro- and nanoelectromechanical switches. Here we show how stiction and adhesion are related for a liquid drop on a hexagonal boron nitride monolayer on rhodium, by measuring dynamic contact angles in two distinct states of the solid-liquid interface: a corrugated state in the absence of hydrogen intercalation and an intercalation-induced flat state. Stiction and adhesion can be reversibly switched by applying different electrochemical potentials to the sample, causing atomic hydrogen to be intercalated or not. We ascribe the change in adhesion to a change in lateral electric field of in-plane two-nanometre dipole rings, because it cannot be explained by the change in surface roughness known from the Wenzel model. Although the change in adhesion can be calculated for the system we study, it is not yet possible to determine the stiction at such a solid-liquid interface using ab initio methods. The inorganic hybrid of hexagonal boron nitride and rhodium is very stable and represents a new class of switchable surfaces with the potential for application in the study of adhesion, friction and lubrication.


Asunto(s)
Compuestos de Boro/química , Rodio/química , Adhesividad , Animales , Electricidad , Fricción , Hidrógeno/química , Locomoción , Lubrificación , Humectabilidad
12.
ACS Nano ; 9(5): 5520-35, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25894469

RESUMEN

We shine light on the covalent modification of graphite and graphene substrates using diazonium chemistry under ambient conditions. We report on the nature of the chemical modification of these graphitic substrates, the relation between molecular structure and film morphology, and the impact of the covalent modification on the properties of the substrates, as revealed by local microscopy and spectroscopy techniques and electrochemistry. By careful selection of the reagents and optimizing reaction conditions, a high density of covalently grafted molecules is obtained, a result that is demonstrated in an unprecedented way by scanning tunneling microscopy (STM) under ambient conditions. With nanomanipulation, i.e., nanoshaving using STM, surface structuring and functionalization at the nanoscale is achieved. This manipulation leads to the removal of the covalently anchored molecules, regenerating pristine sp(2) hybridized graphene or graphite patches, as proven by space-resolved Raman microscopy and molecular self-assembly studies.

13.
Chemistry ; 21(4): 1652-9, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25413370

RESUMEN

Multicomponent network formation by using a shape-persistent macrocycle (MC6) at the interface between an organic liquid and Au(111) surface is demonstrated. MC6 serves as a versatile building block that can be coadsorbed with a variety of organic molecules based on different types of noncovalent interactions at the liquid-solid interface. Scanning tunneling microscopy (STM) reveals the formation of crystalline bicomponent networks upon codeposition of MC6 with aromatic molecules, such as fullerene (C60) and coronene. Tetracyanoquinodimethane, on the other hand, was found to induce disorder into the MC6 networks by adsorbing on the rim of the macrocycle. Immobilization of MC6 itself was studied in two different noncovalently assembled host networks. MC6 assumed a rather passive role as a guest and simply occupied the host cavities in one network, whereas it induced a structural transition in the other. Finally, the central cavity of MC6 was used to capture C60 in a complex three-component system. Precise immobilization of organic molecules at discrete locations within multicomponent networks, as demonstrated here, constitutes an important step towards bottom-up fabrication of functional surface-based nanostructures.

14.
Angew Chem Int Ed Engl ; 53(47): 12951-4, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25255998

RESUMEN

We demonstrate the spontaneous and reversible transition between the two- and three-dimensional self-assembly of a supramolecular system at the solid-liquid interface under electrochemical conditions, using in situ scanning tunneling microscopy. By tuning the interfacial potential, we can selectively organize our target molecules in an open porous pattern, fill these pores to form an auto-host-guest structure, or stack the building blocks in a stratified bilayer. Using a simple electrostatic model, we rationalize which charge density is required to enable bilayer formation, and conversely, which molecular size/charge ratio is necessary in the design of new building blocks. Our results may lead to a new class of electrochemically controlled dynamic host-guest systems, artificial receptors, and smart materials.

15.
Chem Commun (Camb) ; 50(72): 10376-8, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25079562

RESUMEN

Using in situ electrochemical scanning tunnelling microscopy (EC-STM), we demonstrate fully reversible tuning of molecular tiling between self-assembled structures with supramolecular motifs containing 2, 3, 4, 6 or 7 tectons. The structures can be explained by electrocompression of the cationic adlayer at the solid-liquid interface.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/química , Antraquinonas/química , Cationes/química , Técnicas Electroquímicas , Electrólitos/química , Oro/química , Microscopía de Túnel de Rastreo
16.
Chemistry ; 19(36): 12077-85, 2013 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-23873625

RESUMEN

Diazadithia[7]helicenes were synthesized from the readily available building block ethyl 7-chloro-8-formylthieno[3,2-f]quinoline-2-carboxylate by a Wittig reaction-photocyclization strategy. The helicene core was functionalized by nucleophilic aromatic substitution with a variety of nucleophiles (e.g., O-, N-, and C-centered) and palladium-catalyzed reactions such as Suzuki coupling and Buchwald-Hartwig amination. Racemization studies confirmed that the enantiopure forms of these [7]helicenes are conformationally stable compared to their lower analogues. The solid-state structures of the novel diazadithia[7]helicenes were determined by single-crystal X-ray diffraction. The crystal structures of these azathia[7]helicenes show columnar stacking in antiparallel fashion. The HOMO-LUMO gaps of the new compounds were determined on the basis of electrochemical and optical measurements.


Asunto(s)
Compuestos Aza/química , Compuestos Policíclicos/química , Compuestos Policíclicos/síntesis química , Quinolinas/química , Aminación , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular , Paladio/química , Técnicas de Síntesis en Fase Sólida , Estereoisomerismo
17.
Anal Chim Acta ; 706(2): 367-78, 2011 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-22023875

RESUMEN

In this work we discuss about the method development, applicability and limitations of an asymmetric flow field flow fractionation (A4F) system in combination with a multi-detector setup consisting of UV/vis, light scattering, and inductively coupled plasma mass spectrometry (ICPMS). The overall aim was to obtain a size dependent-, element specific-, and quantitative method appropriate for the characterization of metallic engineered nanoparticle (ENP) dispersions. Thus, systematic investigations of crucial method parameters were performed by employing well characterized Au nanoparticles (Au-NPs) as a defined model system. For good separation performance, the A4F flow-, membrane-, and carrier conditions were optimized. To obtain reliable size information, the use of laser light scattering based detectors was evaluated, where an online dynamic light scattering (DLS) detector showed good results for the investigated Au-NP up to a size of 80 nm in hydrodynamic diameter. To adapt large sensitivity differences of the various detectors, as well as to guarantee long term stability and minimum contamination of the mass spectrometer a split-flow concept for coupling ICPMS was evaluated. To test for reliable quantification, the ICPMS signal response of ionic Au standards was compared to that of Au-NP. Using proper stabilization with surfactants, no difference for concentrations of 1-50 µg Au L(-1) in the size range from 5 to 80 nm for citrate stabilized dispersions was observed. However, studies using different A4F channel membranes showed unspecific particle-membrane interaction resulting in retention time shifts and unspecific loss of nanoparticles, depending on the Au-NP system as well as membrane batch and type. Thus, reliable quantification and discrimination of ionic and particular species was performed using ICPMS in combination with ultracentrifugation instead of direct quantification with the A4F multi-detector setup. Figures of merit were obtained, by comparing the results from the multi detector approach outlined above, with results from batch-DLS and transmission electron microscopy (TEM). Furthermore, validation performed with certified NIST Au-NP showed excellent agreement. The developed methods show potential for characterization of other commonly used and important metallic engineered nanoparticles.

19.
J Am Chem Soc ; 132(23): 8187-93, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20481543

RESUMEN

Electron transport characteristics were studied in redox molecule-modified tunneling junctions Au(111)/6-thiohexanoylferrocene (Fc6)/solution gap/Au STM tip in the absence and in the presence of gold nanoclusters employing an electrochemical STM setup. We observed transistor- and diode-like current-voltage responses accounted for by the redox process at the ferrocene moiety. We demonstrate that the reorganization energy of the redox site decreases with decreasing gap size. As a unique new feature, we discovered the formation of uniform (size approximately 2.4 nm) gold nanoparticles, upon multiple oxidation/reduction cycles of the Fc6 adlayer. The immobilized nanoparticles modify the electron transport response of the Fc6 tunneling junctions dramatically. On top of embedded single nanoparticles we observed single-electron Coulomb charging signatures with up to seven narrow and equally spaced energy states upon electrochemical gating. Our results demonstrate the power of the electrochemical approach in molecular electronics and offer a new perspective toward two-state and multistate electronic switching in condensed media at room temperature.


Asunto(s)
Compuestos Organometálicos/química , Conductividad Eléctrica , Electroquímica , Electrodos , Electrólitos/química , Transporte de Electrón , Compuestos Ferrosos/química , Oro/química , Metalocenos , Análisis Espectral , Propiedades de Superficie , Transistores Electrónicos
20.
Phys Chem Chem Phys ; 12(20): 5417-24, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20376395

RESUMEN

We present the first kinetic study of quantised double layer charging of monolayer-protected gold clusters in an ionic liquid. Cyclic voltammetry and electrochemical impedance measurements reveal that kinetic control is involved in the quantised cluster charging in these room temperature melts. The level of kinetic control varies up to one order of magnitude depending on ionic liquid composition, which may have implications for the development of future nanoelectronic devices. By studying the quantised charging process in the chemically relevant permutations of two anions and two cations, we find strong indications that the ionic liquid behaviour is not a linear combination of its composing ions' properties, but is dominated by specific interactions. Based on a Walden plot analysis, we hypothesise that the chemical availability of ions is different in the various liquids, and explains the differences in monolayer-protected gold cluster (MPC) charging rates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...