Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902311

RESUMEN

It is well-established that double-stranded RNA (dsRNA) exhibits noticeable radioprotective and radiotherapeutic effects. The experiments conducted in this study directly demonstrated that dsRNA was delivered into the cell in its native form and that it induced hematopoietic progenitor proliferation. The 68 bp synthetic dsRNA labeled with 6-carboxyfluorescein (FAM) was internalized into mouse hematopoietic progenitors, c-Kit+ (a marker of long-term hematopoietic stem cells) cells and CD34+ (a marker of short-term hematopoietic stem cells and multipotent progenitors) cells. Treating bone marrow cells with dsRNA stimulated the growth of colonies, mainly cells of the granulocyte-macrophage lineage. A total of 0.8% of Krebs-2 cells internalized FAM-dsRNA and were simultaneously CD34+ cells. dsRNA in its native state was delivered into the cell, where it was present without any signs of processing. dsRNA binding to a cell was independent of cell charge. dsRNA internalization was related to the receptor-mediated process that requires energy from ATP. Synthetic dsRNA did not degrade in the bloodstream for at least 2 h. Hematopoietic precursors that had captured dsRNA reinfused into the bloodstream and populated the bone marrow and spleen. This study, for the first time, directly proved that synthetic dsRNA is internalized into a eukaryotic cell via a natural mechanism.


Asunto(s)
Células Madre Hematopoyéticas , ARN Bicatenario , Animales , Ratones , ARN Bicatenario/farmacología , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Antígenos CD34/metabolismo , Células de la Médula Ósea/metabolismo , Células Cultivadas
2.
Comput Struct Biotechnol J ; 19: 4702-4710, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504663

RESUMEN

The conformation of mRNA in the region of the human 80S ribosome decoding site was monitored using 11-mer mRNA analogues that bore nitroxide spin labels attached to the terminal nucleotide bases. Intramolecular spin-spin distances were measured by DEER/PELDOR spectroscopy in model complexes mimicking different states of the 80S ribosome during elongation and termination of translation. The measurements revealed that in all studied complexes, mRNA exists in two alternative conformations, whose ratios are different in post-translocation, pre-translocation and termination complexes. We found that the presence of a tRNA molecule at the ribosomal A site decreases the relative share of the more extended mRNA conformation, whereas the binding of eRF1 (alone or in a complex with eRF3) results in the opposite effect. In the termination complexes, the ratios of mRNA conformations are practically the same, indicating that a part of mRNA bound in the ribosome channel does not undergo significant structural alterations in the course of completion of the translation. Our results contribute to the understanding of mRNA molecular dynamics in the mammalian ribosome channel during translation.

3.
Biochim Biophys Acta Proteins Proteom ; 1869(10): 140698, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34273599

RESUMEN

Abasic (AP) sites in mRNAs are lesions whose accumulation in cells is linked to various neurodegenerative diseases arising from the appearance of truncated peptides due to the premature cessation of translation of these mRNAs. It is believed that the translation of AP site-containing mRNAs is stopped when the damaged codon arrives to the A site, where it is not decoded. We propose an alternative translation arrest mechanism mediated by the 40S ribosomal subunit protein uS3. Recently, it has been shown that in human 80S ribosomal complexes assembled without translation factors, uS3 cross-links to the AP site at the 3'-terminus of the mRNA, whose undamaged part is bound at the 40S subunit channel, via its peptide 55-64 exposed near the mRNA entry pore. In this study, we examined whether such cross-linking occurs during the translation of mRNA with the AP site. To this end, we used a set of synthetic mRNAs bearing the AP site inserted in the desired location in their sequences. An analysis of 80S ribosomal complexes formed with these mRNAs in a mammalian cell-free protein-synthesizing system demonstrates that AP sites do indeed cross-link to uS3 in the course of the translation. We also show that the cross-linking occurs as soon as the AP site arrives to a common favorable position relative to uS3, which is independent on its location in the mRNA. Our findings suggest that the mechanism of stopping translation of damaged mRNAs involving uS3, along with the one mentioned above, could underlie ribosome-associated mRNA quality control.


Asunto(s)
Péptidos/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Regiones no Traducidas 3' , Animales , Sistema Libre de Células , Humanos , Péptidos/química , Biosíntesis de Proteínas , Conejos , Biología Sintética
4.
Biochimie ; 184: 132-142, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33675855

RESUMEN

The ribosomal protein eL38 is a component of the mammalian translation machine. The deletion of the Rpl38 locus in mice results in the Tail-short (Ts) mutant phenotype characterized by a shortened tail and other defects in the axial skeleton development. Here, using the next-generation sequencing of total RNA from HEK293 cells knocked down of eL38 mRNA by transfection with specific siRNAs, we examined the effect of reduced eL38 content on genomic transcription. An approximately 4-fold decrease in the level of eL38 was shown to cause changes in the expression of nearly 1500 genes. Among the down-regulated genes, there were those responsible for p53 activity, Ca2+ metabolism and several signaling processes, as well as genes involved in the organization and functioning of the cytoskeleton. The genes related to rRNA processing and translation, along with many others, including those whose dysregulation is associated with developmental disorders, turned out to be up-regulated. Thus, we demonstrated that the decreased RPL38 expression leads to a significant reorganization of genomic transcription. Our findings suggest a possible link between the balance of eL38 and genes implicated in osteogenesis, thereby contributing to the elucidation of the reasons for the appearance of the above Ts mutant phenotype in animals.


Asunto(s)
Genoma Humano , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Transcripción Genética , Células HEK293 , Humanos , ARN Mensajero/genética , Proteínas Ribosómicas/genética
5.
Int J Radiat Biol ; 96(9): 1173-1191, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32658564

RESUMEN

THE PURPOSE OF THE ARTICLE: Protection from ionizing radiation is the most important component in the curing malignant neoplasms, servicing atomic reactors, and resolving the situations associated with uncontrolled radioactive pollutions. In this regard, discovering new effective radioprotectors as well as novel principles of protecting living organisms from high-dose radiation is the most important factor, determining the new approaches in medical and technical usage of radiation. MATERIALS AND METHODS: Experimental animals were irradiated on the γ-emitter (Cs137) with a dose of 9.4 Gy. Radioprotective properties of several agents (total RNA, single-stranded RNA, double-stranded RNA and B-190) were estimated by the survival/death rates of experimental animals within 30-90 d. Pathomorphological examination of internal organs end electron microscope assay was done on days 9-12 after irradiation. Cloning and other molecular procedures were performed accordingly to commonly accepted protocols. For assessment of the internalization of labeled nucleic acid, bone marrow cells were incubated with double-stranded RNA labeled with 6-FAM fluorescent dye. Cells with internalized double-stranded RNA were assayed using Axio Imager M1 microscope. In the other experiment, bone marrow cells after incubation with double-stranded RNA were stained with Cy5-labeled anti-CD34 antibodies and assayed using Axioskop 2 microscope. RESULTS: In this study, several biological features of the radioprotective action of double-stranded RNA are characterized. It was shown that 160 µg of the double-stranded RNA per mouse protect experimental animals from the absolutely lethal dose of γ-radiation of 9.4 Gy. In different experiments, 80-100% of irradiated animals survive and live until their natural death. Radioprotective properties of double-stranded RNA were found to be independent on its sequence, but strictly dependent on its double-stranded form. Moreover, double-stranded RNA must have 'open' ends of the molecule to exert its radioprotective activity. CONCLUSIONS: Experiments indicate that radioprotective effect of double-stranded RNA is tightly bound to its internalization into hematopoietic stem cells, which further repopulate the spleen parenchyma of irradiated mice. Actively proliferating progenitors form the splenic colonies, which further serve as the basis for restoration of hematopoiesis and immune function and determine the survival of animals received the lethal dose of radiation.


Asunto(s)
ARN Bicatenario/farmacología , ARN de Hongos/farmacología , Protectores contra Radiación/farmacología , Saccharomyces cerevisiae/genética , Animales , Relación Dosis-Respuesta en la Radiación , Rayos gamma/efectos adversos , Ratones , Factores de Tiempo
6.
Cells ; 9(5)2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429214

RESUMEN

An imbalance in the synthesis of ribosomal proteins can lead to the disruption of various cellular processes. For mammalian cells, it has been shown that the level of the eukaryote-specific ribosomal protein eL29, also known as the one interacting with heparin/heparan sulfate, substantially affects their growth. Moreover, in animals lacking this protein, a number of anatomical abnormalities have been observed. Here, we applied next-generation RNA sequencing to HEK293 cells transfected with siRNAs specific for the mRNA of eL29 to determine what changes occur in the transcriptome profile with a decrease in the level of the target protein. We showed that an approximately 2.5-fold decrease in the content of eL29 leads to statistically significant changes in the expression of more than a thousand genes at the transcription level, without a noticeable effect on cell viability, rRNA level, and global translation. The set of eL29-dependent genes included both up-regulated and down-regulated ones, among which there are those previously identified as targets for proteins implicated in oncogenesis. Thus, our findings demonstrate that an insufficiency of eL29 in mammalian cells causes a significant reorganization of gene expression, thereby highlighting the relationship between the cellular balance of eL29 and the activities of certain genes.


Asunto(s)
Regulación de la Expresión Génica , Mamíferos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Transcripción Genética , Animales , Técnicas de Silenciamiento del Gen , Ontología de Genes , Células HEK293 , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , RNA-Seq , Transcriptoma , Proteína p53 Supresora de Tumor/metabolismo
7.
Nucleic Acids Res ; 47(22): 11850-11860, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31724718

RESUMEN

The features of previously unexplored labile complexes of human 40S ribosomal subunits with RNAs, whose formation is manifested in the cross-linking of aldehyde derivatives of RNAs to the ribosomal protein uS3 through its peptide 55-64 located outside the mRNA channel, were studied by EPR spectroscopy methods. Analysis of subatomic 40S subunit models showed that a likely site for labile RNA binding is a cluster of positively charged amino acid residues between the mRNA entry site and uS3 peptide 55-64. This is consistent with our finding that the 3'-terminal mRNA fragment hanging outside the 40S subunit prevents the cross-linking of an RNA derivative to this peptide. To detect labile complexes of 40S subunits with RNA by DEER/PELDOR spectroscopy, an undecaribonucleotide derivative with nitroxide spin labels at terminal nucleotides was utilized. We demonstrated that the 40S subunit channel occupancy with mRNA does not affect the RNA derivative binding and that uS3 peptide 55-64 is not involved in binding interactions. Replacing the RNA derivative with a DNA one revealed the importance of ribose 2'-OH groups for the complex formation. Using the single-label RNA derivatives, the distance between the mRNA entry site and the loosely bound RNA site on the 40S subunit was estimated.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Unión Proteica , ARN Mensajero/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química
8.
Biochimie ; 158: 117-125, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30594661

RESUMEN

The small subunit ribosomal protein uS3 is a critically important player in the ribosome-mRNA interactions during translation and has numerous functions not directly related to protein synthesis in eukaryotes. A peculiar feature of the human uS3 protein is the ability of its fragment 55-64 exposed on the 40S subunit surface near the mRNA entry channel to form cross-links with 3'-terminal dialdehyde derivatives of various unstructured RNAs and with abasic sites in single-stranded DNAs. Here we showed that the ability of the above uS3 fragment to cross-link to abasic sites in DNAs is inherent only in mature cytoplasmic 40S subunits, but not nuclear pre-40S particles, which implies that it may be relevant to the ribosome-mRNA interplay. To clarify this issue, we investigated interactions of human ribosomes with synthetic mRNA analogues bearing an abasic site protected by a photocleavable group at the 3'-termini. We found that these mRNA analogues can form specific complexes with 80S ribosomes and 40S subunits, where the undamaged upstream part of the analogue is fixed in the mRNA binding channel by interaction with the P-site tRNA, and the downstream part located outside the ribosome is cross-linked to the uS3 fragment 55-64. The yield of cross-links of the mRNA analogues was rather high when their undamaged parts were bound to the mRNA channel prior to deprotection of the abasic site enabling its covalent attachment to the 40S subunit via the uS3 protein, but not vice versa. Based on our findings, one can assume that abasic sites, which can occur in mRNAs due to oxidative stress and ageing, are able to interact directly with the uS3 fragment exposed on the 40S subunit surface near the mRNA entry channel during translation. Consequently, the 40S subunit can be considered as a potential mRNA quality controller.


Asunto(s)
Péptidos/química , ARN Mensajero/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Femenino , Humanos , Péptidos/metabolismo , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
9.
Nucleic Acids Res ; 46(2): 897-904, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29156000

RESUMEN

The model mRNA (MR), 11-mer RNA containing two nitroxide spin labels at the 5'- and 3'-terminal nucleotides and prone to form a stable homodimer (MR)2, was used for Electron Paramagnetic Resonance study of structural rearrangements in mRNA occurring upon its binding to human 80S ribosomes. The formation of two different types of ribosomal complexes with MR was observed. First, there were stable complexes where MR was fixed in the ribosomal mRNA-binding channel by the codon-anticodon interaction(s) with cognate tRNA(s). Second, we for the first time detected complexes assembled without tRNA due to the binding of MR most likely to an exposed peptide of ribosomal protein uS3 away from the mRNA channel. The analysis of interspin distances allowed the conclusion that 80S ribosomes facilitate dissociation of the duplex (MR)2: the equilibrium between the duplex and the single-stranded MR shifts to MR due to its efficient binding with ribosomes. Furthermore, we observed a significant influence of tRNA bound at the ribosomal exit (E) and/or aminoacyl (A) sites on the stability of ribosomal complexes. Our findings showed that a part of mRNA bound in the ribosome channel, which is not involved in codon-anticodon interactions, has more degrees of freedom than that interacting with tRNAs.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Anticodón/metabolismo , Sitios de Unión , Codón/metabolismo , Humanos , Conformación de Ácido Nucleico , Unión Proteica , ARN Mensajero/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Marcadores de Spin
10.
Biochim Biophys Acta ; 1864(10): 1328-38, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27346718

RESUMEN

In this work, we studied how the accessibility of structural elements of the mammalian 40S ribosomal mRNA entry channel, ribosomal protein (rp) uS3 and helix (h) 16 of the 18S rRNA, changes upon the translation initiation. In particular, we examined the accessibility of rp uS3 for binding of unstructured RNAs and of riboses in h16 towards attack with benzoyl cyanide (BzCN) in complexes assembled in rabbit reticulocyte lysate utilizing synthetic oligoribonucleotides as well as full-length and truncated up to the initiation AUG codon hepatitis C virus IRES as model mRNAs. With both mRNA types, the rp uS3 peptide recognizing single-stranded RNAs was shown to become shielded only in those 48S preinitiation complexes (PICs) that contained eIF3j bound to 40S subunit in the area between the decoding site and the mRNA entry channel. Chemical probing with BzCN revealed that h16 in the 48S PICs containing eIF3j or scanning factor DHX29 is strongly shielded; the effect was observed with all the mRNAs used, and h16 remained protected as well in 80S post-initiation complexes lacking these factors. Altogether, the obtained results allowed us to suggest that eIF3j bound at the 48S PICs makes the rp uS3 inaccessible for binding of RNAs and this factor subunit is responsible for the decrease of h16 conformational flexibility; the latter is manifested as reduced accessibility of h16 to BzCN. Thus, our findings provide new insights into how eIF3j is implicated in ensuring the proper conformation of the mRNA entry channel, thereby facilitating mRNA loading.


Asunto(s)
Mamíferos/genética , Iniciación de la Cadena Peptídica Traduccional/genética , ARN Mensajero/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Animales , Secuencia de Bases , Codón Iniciador/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Biosíntesis de Proteínas/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Reticulocitos/metabolismo
11.
Biophys J ; 109(12): 2637-2643, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26682820

RESUMEN

mRNAs are involved in complicated supramolecular complexes with human 40S and 80S ribosomes responsible for the protein synthesis. In this work, a derivative of nonaribonucleotide pUUCGUAAAA with nitroxide spin labels attached to the 5'-phosphate and to the C8 atom of the adenosine in sixth position (mRNA analog) was used for studying such complexes using double electron-electron resonance/pulsed electron-electron double resonance spectroscopy. The complexes were assembled with participation of tRNA(Phe), which targeted triplet UUC of the derivative to the ribosomal peptidyl site and predetermined location of the adjacent GUA triplet coding for Val at the aminoacyl (A) site. The interspin distances were measured between the two labels of mRNA analog attached to the first nucleotide of the peptidyl site bound codon and to the third nucleotide of the A site bound codon, in the absence/presence of second tRNA bound at the A site. The values of the obtained interspin distances agree with those calculated for available near-atomic structures of similar complexes of 40S and 80S ribosomes, showing that neither 60S subunit nor tRNA at the A site have a noticeable effect on arrangement of mRNA at the codon-anticodon interaction area. In addition, the shapes of distance distributions in four studied ribosomal complexes allowed conclusions on conformational flexibility of mRNA in these complexes. Overall, the results of this study are the first, to our knowledge, demonstration of double electron-electron resonance/pulsed electron-electron double resonance application for measurements of intramolecular distances in multicomponent supramolecular complexes involving intricate cellular machineries and for evaluating dynamic properties of ligands bound to these machineries.


Asunto(s)
Marcadores de Spin , Secuencia de Bases , Espectroscopía de Resonancia por Spin del Electrón , Femenino , Humanos , Óxidos de Nitrógeno/química , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/química , Ribosomas/metabolismo
12.
Biochim Biophys Acta ; 1849(8): 930-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26066980

RESUMEN

In this work, intimate contacts of riboses of mRNA stretch from nucleotides in positions +3 to +12 with respect to the first nucleotide of the P site codon were studied using cross-linking of short mRNA analogs with oxidized 3'-terminal riboses bound to human ribosomes in the complexes stabilized by codon-anticodon interactions and in the binary complexes. It was shown that in all types of complexes cross-links of the mRNA analogs to ribosomal protein (rp) uS3 occur and the yield of these cross-links does not depend on the presence of tRNA and on sequences of the mRNA analogs. Site of the mRNA analogs cross-linking in rp uS3 was mapped to the peptide in positions 55-64 that is located away from the mRNA binding site. Additionally, in complexes with P site-bound tRNA, riboses of mRNA nucleotides in positions +4 to +7 cross-linked to the C-terminal tail of rp uS19 displaying a contact specific to the decoding site of the mammalian ribosome, and tRNA bound at the A site completely blocked this cross-linking. Remarkably, rps uS3 and uS19 were also able to cross-link to the fragment of HCV IRES containing unstructured 3'-terminal part restricted by the AUGC tetraplet with oxidized 3'-terminal ribose. However, no cross-linking to rp uS3 was observed in the 48S preinitiation complex assembled in reticulocyte lysate with this HCV IRES derivative. The results obtained show an ability of rp uS3 to interact with single-stranded RNAs. Possible roles of rp uS3 region 55-64 in the functioning of ribosomes are discussed.


Asunto(s)
ARN Mensajero/metabolismo , Ribosamonofosfatos/metabolismo , Ribosomas/metabolismo , Anticodón/química , Secuencia de Bases , Sitios de Unión/efectos de los fármacos , Codón/química , Codón/metabolismo , Reactivos de Enlaces Cruzados/química , Hepacivirus/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Ribosamonofosfatos/química , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Sitio de Iniciación de la Transcripción
13.
Nucleic Acids Symp Ser (Oxf) ; (52): 229-30, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18776337

RESUMEN

We report here the design and synthesis of new mono- and bis-pyrene-labeled oligo(2'-O-methylribonucleotide) tandems as perspective probes for SNP detection. The detection strategy is based on the eximer formation when two or more pyrene groups are brought into close proximity upon hybridization of the tandem components with DNA. The potential of SNP detection with tandems of pyrene-labeled oligo(2'-O-methylribonucleotides) by duplex melting curve analysis based on excimer fluorescence registration was demonstrated.


Asunto(s)
Colorantes Fluorescentes/química , Sondas de Oligonucleótidos/química , Polimorfismo de Nucleótido Simple , Pirenos/química , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Desnaturalización de Ácido Nucleico , Espectrometría de Fluorescencia , Termodinámica
14.
Artículo en Inglés | MEDLINE | ID: mdl-18066907

RESUMEN

We have developed a new method for the preparation of oligodeoxyribonucleotides and oligo(2'-O-methylribonucleotides) that contain a 2'-phosphorylated ribonucleoside residue, and optimized it to avoid 2' -3' -isomerization and chain cleavage. Structures of the 2' -phosphorylated oligonucleotides were confirmed by MALDI-TOF MS and enzymatic digestion, and the stability of their duplexes with DNA and RNA was investigated. 2'-Phosphorylated oligonucleotides may be useful intermediates for the introduction of various chemical groups for a wide range of applications.


Asunto(s)
Química Orgánica/métodos , Oligonucleótidos/síntesis química , Oligonucleótidos/química , Fosforilación
15.
RNA Biol ; 3(3): 122-9, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17179743

RESUMEN

Ribosomal proteins neighboring the mRNA downstream of the codon bound at the decoding site of human 80S ribosomes were identified using three sets of mRNA analogues that contained a UUU triplet at the 5' terminus and a perfluorophenylazide cross-linker at guanosine, adenosine or uridine residues placed at various locations 3' of this triplet. The positions of modified mRNA nucleotides on the ribosome were governed by tRNA(Phe) cognate to the UUU triplet targeted to the P site. Upon mild UV-irradiation, the mRNA analogues cross-linked preferentially to the 40S subunit, to the proteins and to a lesser extent to the 18S rRNA. Cross-linked nucleotides of 18S rRNA were identified previously. In the present study, it is shown that among the proteins the main target for cross-linking with all the mRNA analogues tested was protein S3 (homologous to prokaryotic S3, S3p); minor cross-linking to protein S2 (S5p) was also detected. Both proteins cross-linked to mRNA analogues in the ternary complexes as well as in the binary complexes (without tRNA). In the ternary complexes protein S15 (S19p) also cross-linked, the yield of the cross-link decreased significantly when the modified nucleotide moved from position +5 to position +12 with respect to the first nucleotide of the P site bound codon. In several ternary complexes minor cross-linking to protein S30 was likewise detected. The results of this study indicate that S3 is a key protein at the mRNA binding site neighboring mRNA downstream of the codon at the decoding site in the human ribosome.


Asunto(s)
ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...