Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38801498

RESUMEN

Recent findings from studies involving astronauts and animal models indicate that microgravity increases immune cell activity and potentially alters the white and gray matter of the central nervous system (CNS). To further investigate the impact of microgravity on CNS cells, we established cultures of three-dimensional neural organoids containing isogenic microglia, the brain's resident immune cells, and sent them onboard the International Space Station. When using induced pluripotent stem cell (iPSC) lines from individuals affected by neuroinflammatory and neurodegenerative diseases such as multiple sclerosis (MS) and Parkinson's disease (PD), these cultures can provide novel insights into pathogenic pathways that may be exacerbated by microgravity. We have devised a cryovial culture strategy that enables organoids to be maintained through space travel and onboard the International Space Station (ISS) without the need for medium or carbon dioxide exchange. Here, we provide a comprehensive description of all the steps involved: generating various types of neural organoids, establishing long-term cultures, arranging plans for shipment to the Kennedy Space Center (KSC), and ultimately preparing organoids for launch into low-Earth orbit (LEO) and return to Earth for post-flight analyses.

2.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559052

RESUMEN

In-space manufacturing of nanomaterials is a promising concept while having limited successful examples. DNA-inspired Janus base nanomaterials (JBNs), used for therapeutics delivery and tissue regeneration, are fabricated via a controlled self-assembly process in water at ambient temperature, making them highly suitable for in-space manufacturing. For the first time, we designed and accomplished the production of JBNs on orbit during the Axiom-2 (Ax-2) mission demonstrating great promising and benefits of in-space manufacturing of nanomaterials.

3.
Mol Psychiatry ; 29(3): 566-579, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38129659

RESUMEN

Three Prime Repair Exonuclease 1 (TREX1) gene mutations have been associated with Aicardi-Goutières Syndrome (AGS) - a rare, severe pediatric autoimmune disorder that primarily affects the brain and has a poorly understood etiology. Microglia are brain-resident macrophages indispensable for brain development and implicated in multiple neuroinflammatory diseases. However, the role of TREX1 - a DNase that cleaves cytosolic nucleic acids, preventing viral- and autoimmune-related inflammatory responses - in microglia biology remains to be elucidated. Here, we leverage a model of human embryonic stem cell (hESC)-derived engineered microglia-like cells, bulk, and single-cell transcriptomics, optical and transmission electron microscopy, and three-month-old assembloids composed of microglia and oligodendrocyte-containing organoids to interrogate TREX1 functions in human microglia. Our analyses suggest that TREX1 influences cholesterol metabolism, leading to an active microglial morphology with increased phagocytosis in the absence of TREX1. Notably, regulating cholesterol metabolism with an HMG-CoA reductase inhibitor, FDA-approved atorvastatin, rescues these microglial phenotypes. Functionally, TREX1 in microglia is necessary for the transition from gliogenic intermediate progenitors known as pre-oligodendrocyte precursor cells (pre-OPCs) to precursors of the oligodendrocyte lineage known as OPCs, impairing oligodendrogenesis in favor of astrogliogenesis in human assembloids. Together, these results suggest routes for therapeutic intervention in pathologies such as AGS based on microglia-specific molecular and cellular mechanisms.


Asunto(s)
Diferenciación Celular , Colesterol , Exodesoxirribonucleasas , Homeostasis , Microglía , Oligodendroglía , Fosfoproteínas , Humanos , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Microglía/metabolismo , Diferenciación Celular/fisiología , Oligodendroglía/metabolismo , Colesterol/metabolismo , Fosfoproteínas/metabolismo , Homeostasis/fisiología , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/genética , Encéfalo/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Organoides/metabolismo
4.
PLoS Biol ; 20(11): e3001845, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36327326

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which was rapidly declared a pandemic by the World Health Organization (WHO). Early clinical symptomatology focused mainly on respiratory illnesses. However, a variety of neurological manifestations in both adults and newborns are now well-documented. To experimentally determine whether SARS-CoV-2 could replicate in and affect human brain cells, we infected iPSC-derived human brain organoids. Here, we show that SARS-CoV-2 can productively replicate and promote death of neural cells, including cortical neurons. This phenotype was accompanied by loss of excitatory synapses in neurons. Notably, we found that the U.S. Food and Drug Administration (FDA)-approved antiviral Sofosbuvir was able to inhibit SARS-CoV-2 replication and rescued these neuronal alterations in infected brain organoids. Given the urgent need for readily available antivirals, these results provide a cellular basis supporting repurposed antivirals as a strategic treatment to alleviate neurocytological defects that may underlie COVID-19- related neurological symptoms.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Recién Nacido , Humanos , Sofosbuvir/farmacología , Sofosbuvir/uso terapéutico , Organoides , Antivirales/farmacología , Antivirales/uso terapéutico , Encéfalo , Muerte Celular , Sinapsis
5.
Cell Res ; 30(10): 833-853, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32499560

RESUMEN

Brain tumors are dynamic complex ecosystems with multiple cell types. To model the brain tumor microenvironment in a reproducible and scalable system, we developed a rapid three-dimensional (3D) bioprinting method to construct clinically relevant biomimetic tissue models. In recurrent glioblastoma, macrophages/microglia prominently contribute to the tumor mass. To parse the function of macrophages in 3D, we compared the growth of glioblastoma stem cells (GSCs) alone or with astrocytes and neural precursor cells in a hyaluronic acid-rich hydrogel, with or without macrophage. Bioprinted constructs integrating macrophage recapitulate patient-derived transcriptional profiles predictive of patient survival, maintenance of stemness, invasion, and drug resistance. Whole-genome CRISPR screening with bioprinted complex systems identified unique molecular dependencies in GSCs, relative to sphere culture. Multicellular bioprinted models serve as a scalable and physiologic platform to interrogate drug sensitivity, cellular crosstalk, invasion, context-specific functional dependencies, as well as immunologic interactions in a species-matched neural environment.


Asunto(s)
Glioblastoma/inmunología , Microambiente Tumoral/inmunología , Animales , Bioimpresión , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , Células-Madre Neurales , Andamios del Tejido
6.
Cell Stem Cell ; 26(2): 187-204.e10, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31956038

RESUMEN

Zika virus (ZIKV) causes microcephaly by killing neural precursor cells (NPCs) and other brain cells. ZIKV also displays therapeutic oncolytic activity against glioblastoma (GBM) stem cells (GSCs). Here we demonstrate that ZIKV preferentially infected and killed GSCs and stem-like cells in medulloblastoma and ependymoma in a SOX2-dependent manner. Targeting SOX2 severely attenuated ZIKV infection, in contrast to AXL. As mechanisms of SOX2-mediated ZIKV infection, we identified inverse expression of antiviral interferon response genes (ISGs) and positive correlation with integrin αv (ITGAV). ZIKV infection was disrupted by genetic targeting of ITGAV or its binding partner ITGB5 and by an antibody specific for integrin αvß5. ZIKV selectively eliminated GSCs from species-matched human mature cerebral organoids and GBM surgical specimens, which was reversed by integrin αvß5 inhibition. Collectively, our studies identify integrin αvß5 as a functional cancer stem cell marker essential for GBM maintenance and ZIKV infection, providing potential brain tumor therapy.


Asunto(s)
Glioblastoma , Células-Madre Neurales , Infección por el Virus Zika , Virus Zika , Humanos , Receptores de Vitronectina , Factores de Transcripción SOXB1/genética
7.
Sci Rep ; 9(1): 19291, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848365

RESUMEN

The goal of stem cell therapy for spinal cord injury (SCI) is to restore motor function without exacerbating pain. Induced pluripotent stem cells (iPSC) may be administered by autologous transplantation, avoiding immunologic challenges. Identifying strategies to optimize iPSC-derived neural progenitor cells (hiNPC) for cell transplantation is an important objective. Herein, we report a method that takes advantage of the growth factor-like and anti-inflammatory activities of the fibrinolysis protease, tissue plasminogen activator tPA, without effects on hemostasis. We demonstrate that conditioning hiNPC with enzymatically-inactive tissue-type plasminogen activator (EI-tPA), prior to grafting into a T3 lesion site in a clinically relevant severe SCI model, significantly improves motor outcomes. EI-tPA-primed hiNPC grafted into lesion sites survived, differentiated, acquired markers of motor neuron maturation, and extended ßIII-tubulin-positive axons several spinal segments below the lesion. Importantly, only SCI rats that received EI-tPA primed hiNPC demonstrated significantly improved motor function, without exacerbating pain. When hiNPC were treated with EI-tPA in culture, NMDA-R-dependent cell signaling was initiated, expression of genes associated with stemness (Nestin, Sox2) was regulated, and thrombin-induced cell death was prevented. EI-tPA emerges as a novel agent capable of improving the efficacy of stem cell therapy in SCI.


Asunto(s)
Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Traumatismos de la Médula Espinal/terapia , Activador de Tejido Plasminógeno/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Ratas , Recuperación de la Función , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología , Trasplante de Células Madre , Células Madre/efectos de los fármacos , Activador de Tejido Plasminógeno/química , Activador de Tejido Plasminógeno/genética
8.
Proc Natl Acad Sci U S A ; 116(32): 16086-16094, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31320591

RESUMEN

Exosomes are thought to be released by all cells in the body and to be involved in intercellular communication. We tested whether neural exosomes can regulate the development of neural circuits. We show that exosome treatment increases proliferation in developing neural cultures and in vivo in dentate gyrus of P4 mouse brain. We compared the protein cargo and signaling bioactivity of exosomes released by hiPSC-derived neural cultures lacking MECP2, a model of the neurodevelopmental disorder Rett syndrome, with exosomes released by isogenic rescue control neural cultures. Quantitative proteomic analysis indicates that control exosomes contain multiple functional signaling networks known to be important for neuronal circuit development. Treating MECP2-knockdown human primary neural cultures with control exosomes rescues deficits in neuronal proliferation, differentiation, synaptogenesis, and synchronized firing, whereas exosomes from MECP2-deficient hiPSC neural cultures lack this capability. These data indicate that exosomes carry signaling information required to regulate neural circuit development.


Asunto(s)
Exosomas/metabolismo , Red Nerviosa/metabolismo , Neurogénesis , Potenciales de Acción , Animales , Recuento de Células , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Giro Dentado/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Neuronas/citología , Neuronas/metabolismo , Transducción de Señal , Esferoides Celulares/citología , Sinapsis/metabolismo
10.
Sci Rep ; 8(1): 1218, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352135

RESUMEN

The outbreak of the Zika virus (ZIKV) has been associated with increased incidence of congenital malformations. Although recent efforts have focused on vaccine development, treatments for infected individuals are needed urgently. Sofosbuvir (SOF), an FDA-approved nucleotide analog inhibitor of the Hepatitis C (HCV) RNA-dependent RNA polymerase (RdRp) was recently shown to be protective against ZIKV both in vitro and in vivo. Here, we show that SOF protected human neural progenitor cells (NPC) and 3D neurospheres from ZIKV infection-mediated cell death and importantly restored the antiviral immune response in NPCs. In vivo, SOF treatment post-infection (p.i.) decreased viral burden in an immunodeficient mouse model. Finally, we show for the first time that acute SOF treatment of pregnant dams p.i. was well-tolerated and prevented vertical transmission of the virus to the fetus. Taken together, our data confirmed SOF-mediated sparing of human neural cell types from ZIKV-mediated cell death in vitro and reduced viral burden in vivo in animal models of chronic infection and vertical transmission, strengthening the growing body of evidence for SOF anti-ZIKV activity.

11.
Hum Mol Genet ; 27(1): 41-52, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29048558

RESUMEN

Although Zika virus (ZIKV) infection is often asymptomatic, in some cases, it can lead to birth defects in newborns or serious neurologic complications in adults. However, little is known about the interplay between immune and neural cells that could contribute to the ZIKV pathology. To understand the mechanisms at play during infection and the antiviral immune response, we focused on neural precursor cells (NPCs)-microglia interactions. Our data indicate that human microglia infected with the current circulating Brazilian ZIKV induces a similar pro-inflammatory response found in ZIKV-infected human tissues. Importantly, using our model, we show that microglia interact with ZIKV-infected NPCs and further spread the virus. Finally, we show that Sofosbuvir, an FDA-approved drug for Hepatitis C, blocked viral infection in NPCs and therefore the transmission of the virus from microglia to NPCs. Thus, our model provides a new tool for studying neuro-immune interactions and a platform to test new therapeutic drugs.


Asunto(s)
Infección por el Virus Zika/inmunología , Virus Zika/patogenicidad , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/patología , Microglía/patología , Modelos Biológicos , Células-Madre Neurales/patología , Sofosbuvir/farmacología , Virus Zika/metabolismo
12.
Sci Rep ; 7(1): 15771, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29150641

RESUMEN

One of the major challenges of the current Zika virus (ZIKV) epidemic is to prevent congenital foetal abnormalities, including microcephaly, following ZIKV infection of pregnant women. Given the urgent need for ZIKV prophylaxis and treatment, repurposing of approved drugs appears to be a viable and immediate solution. We demonstrate that the common anti-malaria drug chloroquine (CQ) extends the lifespan of ZIKV-infected interferon signalling-deficient AG129 mice. However, the severity of ZIKV infection in these mice precludes the study of foetal (vertical) viral transmission. Here, we show that interferon signalling-competent SJL mice support chronic ZIKV infection. Infected dams and sires are both able to transmit ZIKV to the offspring, making this an ideal model for in vivo validation of compounds shown to suppress ZIKV in cell culture. Administration of CQ to ZIKV-infected pregnant SJL mice during mid-late gestation significantly attenuated vertical transmission, reducing the ZIKV load in the foetal brain more than 20-fold. Given the limited side effects of CQ, its lack of contraindications in pregnant women, and its worldwide availability and low cost, we suggest that CQ could be considered for the treatment and prophylaxis of ZIKV.


Asunto(s)
Antimaláricos/uso terapéutico , Cloroquina/uso terapéutico , Reposicionamiento de Medicamentos , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/prevención & control , Virus Zika/fisiología , Animales , Antimaláricos/farmacología , Cloroquina/farmacología , Modelos Animales de Enfermedad , Humanos , Ratones , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/virología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Virus Zika/efectos de los fármacos , Infección por el Virus Zika/transmisión
13.
Cell Stem Cell ; 21(3): 319-331.e8, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28803918

RESUMEN

Three-prime repair exonuclease 1 (TREX1) is an anti-viral enzyme that cleaves nucleic acids in the cytosol, preventing accumulation and a subsequent type I interferon-associated inflammatory response. Autoimmune diseases, including Aicardi-Goutières syndrome (AGS) and systemic lupus erythematosus, can arise when TREX1 function is compromised. AGS is a neuroinflammatory disorder with severe and persistent intellectual and physical problems. Here we generated a human AGS model that recapitulates disease-relevant phenotypes using pluripotent stem cells lacking TREX1. We observed abundant extrachromosomal DNA in TREX1-deficient neural cells, of which endogenous Long Interspersed Element-1 retrotransposons were a major source. TREX1-deficient neurons also exhibited increased apoptosis and formed three-dimensional cortical organoids of reduced size. TREX1-deficient astrocytes further contributed to the observed neurotoxicity through increased type I interferon secretion. In this model, reverse-transcriptase inhibitors rescued the neurotoxicity of AGS neurons and organoids, highlighting their potential utility in therapeutic regimens for AGS and related disorders.


Asunto(s)
Enfermedades Autoinmunes/enzimología , Exodesoxirribonucleasas/metabolismo , Inflamación/patología , Elementos de Nucleótido Esparcido Largo/genética , Sistema Nervioso/patología , Fosfoproteínas/metabolismo , Células Madre/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Secuencia de Bases , Extractos Celulares , Niño , Citosol/metabolismo , ADN/metabolismo , Exodesoxirribonucleasas/deficiencia , Exodesoxirribonucleasas/genética , Humanos , Lactante , Recién Nacido , Interferones/farmacología , Masculino , Microcefalia/patología , Células-Madre Neurales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Organoides/metabolismo , Fenotipo , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Células Madre/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
14.
Brain ; 138(Pt 1): 53-68, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25384799

RESUMEN

Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic disease. Therefore, we show that system [Formula: see text] participates in microglial reactivity and modulates amyotrophic lateral sclerosis motor neuron degeneration, revealing system [Formula: see text] inactivation, as a potential approach to slow amyotrophic lateral sclerosis disease progression after onset of clinical symptoms.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/deficiencia , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Microglía/metabolismo , Esclerosis Amiotrófica Lateral/mortalidad , Animales , Animales Recién Nacidos , Corteza Cerebral/citología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Glutatión/metabolismo , Humanos , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Mutación/genética , Óxido Nítrico/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
15.
J Neural Transm (Vienna) ; 117(8): 981-1000, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20552235

RESUMEN

Because microglial cells, the resident macrophages of the CNS, react to any lesion of the nervous system, they have for long been regarded as potential players in the pathogenesis of several neurodegenerative disorders including amyotrophic lateral sclerosis, the most common motor neuron disease in the adult. In recent years, this microglial reaction to motor neuron injury, in particular, and the innate immune response, in general, has been implicated in the progression of the disease, in mouse models of ALS. The mechanisms by which microglial cells influence motor neuron death in ALS are still largely unknown. Microglial activation increases over the course of the disease and is associated with an alteration in the production of toxic factors and also neurotrophic factors. Adding to the microglial/macrophage response to motor neuron degeneration, the adaptive immune system can likewise influence the disease process. Exploring these motor neuron-immune interactions could lead to a better understanding in the physiopathology of ALS to find new pathways to slow down motor neuron degeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral , Sistema Inmunológico/inmunología , Sistema Inmunológico/patología , Neuronas Motoras/inmunología , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Humanos , Macrófagos/fisiología , Linfocitos T/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...