Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 73(8): 2369-2384, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35088853

RESUMEN

Mitogen-activated protein kinase (MAPK) cascades transmit environmental signals and induce stress and defence responses in plants. These signalling cascades are negatively controlled by specific Ser/Thr protein phosphatases of the type 2C (PP2C) and dual-specificity phosphatase (DSP) families that inactivate stress-induced MAPKs; however, the interplay between phosphatases of these different types has remained unknown. This work reveals that different Arabidopsis MAPK phosphatases, the PP2C-type AP2C1 and the DSP-type MKP1, exhibit both specific and overlapping functions in plant stress responses. Each single mutant, ap2c1 and mkp1, and the ap2c1 mkp1 double mutant displayed enhanced stress-induced activation of the MAPKs MPK3, MPK4, and MPK6, as well as induction of a set of transcription factors. Moreover, ap2c1 mkp1 double mutants showed an autoimmune-like response, associated with increased levels of the stress hormones salicylic acid and ethylene, and of the phytoalexin camalexin. This phenotype was reduced in the ap2c1 mkp1 mpk3 and ap2c1 mkp1 mpk6 triple mutants, suggesting that the autoimmune-like response is due to MAPK misregulation. We conclude that the evolutionarily distant MAPK phosphatases AP2C1 and MKP1 contribute crucially to the tight control of MAPK activities, ensuring appropriately balanced stress signalling and suppression of autoimmune-like responses during plant growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo
2.
J Exp Bot ; 68(5): 1169-1183, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28062592

RESUMEN

Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Fosfoproteínas Fosfatasas/genética , Inmunidad de la Planta , Proteínas Tirosina Fosfatasas/genética , Pseudomonas syringae/fisiología , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo
3.
J Exp Bot ; 67(1): 107-18, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26438412

RESUMEN

Plant-parasitic cyst nematodes infect plants and form highly sophisticated feeding sites in roots. It is not known which plant cell signalling mechanisms trigger plant defence during the early stages of nematode parasitism. Mitogen-activated protein kinases (MAPKs) are central components of protein phosphorylation cascades transducing extracellular signals to plant defence responses. MAPK phosphatases control kinase activities and the signalling outcome. The involvement and the role of MPK3 and MPK6, as well as the MAPK phosphatase AP2C1, is demonstrated during parasitism of the beet cyst nematode Heterodera schachtii in Arabidopsis. Our data reveal notable activation patterns of plant MAPKs and the induction of AP2C1 suggesting the attenuation of defence signalling in plant cells during early nematode infection. It is demonstrated that the ap2c1 mutant that is lacking AP2C1 is more attractive but less susceptible to nematodes compared with the AP2C1-overexpressing line. This implies that the function of AP2C1 is a negative regulator of nematode-induced defence. By contrast, the enhanced susceptibility of mpk3 and mpk6 plants indicates a positive role of stress-activated MAPKs in plant immunity against nematodes. Evidence is provided that phosphatase AP2C1, as well as AP2C1-targeted MPK3 and MPK6, are important regulators of plant-nematode interaction, where the co-ordinated action of these signalling components ensures the timely activation of plant defence.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/parasitología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Fosfoproteínas Fosfatasas/genética , Tylenchoidea/fisiología , Animales , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta , Análisis de Secuencia de ADN , Transducción de Señal
4.
New Phytol ; 207(4): 1061-74, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26061286

RESUMEN

Stress-activated plant mitogen-activated protein (MAP) kinase pathways play roles in growth adaptation to the environment by modulating cell division through cytoskeletal regulation, but the mechanisms are poorly understood. We performed protein interaction and phosphorylation experiments with cytoskeletal proteins, mass spectrometric identification of MPK6 complexes and immunofluorescence analyses of the microtubular cytoskeleton of mitotic cells using wild-type, mpk6-2 mutant and plants overexpressing the MAP kinase-inactivating phosphatase, AP2C3. We showed that MPK6 interacted with γ-tubulin and co-sedimented with plant microtubules polymerized in vitro. It was the active form of MAP kinase that was enriched with microtubules and followed similar dynamics to γ-tubulin, moving from poles to midzone during the anaphase-to-telophase transition. We found a novel substrate for MPK6, the microtubule plus end protein, EB1c. The mpk6-2 mutant was sensitive to 3-nitro-l-tyrosine (NO2 -Tyr) treatment with respect to mitotic abnormalities, and root cells overexpressing AP2C3 showed defects in chromosome segregation and spindle orientation. Our data suggest that the active form of MAP kinase interacts with γ-tubulin on specific subsets of mitotic microtubules during late mitosis. MPK6 phosphorylates EB1c, but not EB1a, and has a role in maintaining regular planes of cell division under stress conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Huso Acromático/metabolismo , Estrés Fisiológico , Tubulina (Proteína)/metabolismo , Anafase/efectos de los fármacos , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Butadienos/farmacología , Proliferación Celular/efectos de los fármacos , Segregación Cromosómica/efectos de los fármacos , Citocinesis/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Cinetocoros/efectos de los fármacos , Cinetocoros/metabolismo , Meristema/citología , Meristema/efectos de los fármacos , Meristema/metabolismo , Microtúbulos/efectos de los fármacos , Nitrilos/farmacología , Nitrosación/efectos de los fármacos , Fosforilación/efectos de los fármacos , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Huso Acromático/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Telofase/efectos de los fármacos , Tirosina/análogos & derivados , Tirosina/farmacología
5.
Methods Mol Biol ; 1306: 25-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25930691

RESUMEN

Reversible protein phosphorylation is an essential posttranslational modification mechanism executed by opposing actions of protein phosphatases and protein kinases. About 1,000 predicted kinases in Arabidopsis thaliana kinome predominate the number of protein phosphatases, of which there are only ~150 members in Arabidopsis. Protein phosphatases were often referred to as "housekeeping" enzymes, which act to keep eukaryotic systems in balance by counteracting the activity of protein kinases. However, recent investigations reveal the crucial and specific regulatory functions of phosphatases in cell signaling. Phosphatases operate in a coordinated manner with the protein kinases, to execute their important function in determining the cellular response to a physiological stimulus. Closer examination has established high specificity of phosphatases in substrate recognition and important roles in plant signaling pathways, such as pathogen defense and stress regulation, light and hormonal signaling, cell cycle and differentiation, metabolism, and plant growth. In this minireview we provide a compact overview about Arabidopsis protein phosphatase families, as well as members of phosphoglucan and lipid phosphatases, and highlight the recent discoveries in phosphatase research.


Asunto(s)
Arabidopsis/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosforilación , Transducción de Señal
6.
Methods Mol Biol ; 1171: 147-58, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24908126

RESUMEN

The adaptation of plants to the environment is a key property for survival. Adaptation responses to environmental cues are generated in cells by signaling initiated from cell receptors. Signal transduction is based on protein phosphorylation that is employed in mitogen-activated protein kinase (MAPK) cascades to integrate signals from receptors to cellular responses. MAPK activity is determined by phosphorylation of amino acid residues within the kinase activation loop and their dephosphorylation by phosphatases is essential to control signal duration and intensity.Monitoring protein-protein interactions (PPIs) of MAPKs with MAPK phosphatases in vivo provides valuable information about specificity and intracellular localization of the protein complex. Here, we report studying PPIs between Arabidopsis MAPKs and PP2C-type MAPK phosphatases using bimolecular fluorescent complementation (BiFC) in suspension cell protoplasts. The interactions of the MAPKs MPK3, MKP4 and MPK6 with the phosphatases AP2C1 and AP2C3 have been tested.


Asunto(s)
Arabidopsis/enzimología , Ingeniería Genética/métodos , Proteínas Luminiscentes/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Vectores Genéticos/genética , Microscopía Fluorescente , Plásmidos/genética , Protoplastos/metabolismo , Transformación Genética
7.
J Exp Bot ; 65(9): 2335-50, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24648569

RESUMEN

Dual-specificity mitogen-activated protein kinases kinases (MAPKKs) are the immediate upstream activators of MAPKs. They simultaneously phosphorylate the TXY motif within the activation loop of MAPKs, allowing them to interact with and regulate multiple substrates. Often, the activation of MAPKs triggers their nuclear translocation. However, the spatiotemporal dynamics and the physiological consequences of the activation of MAPKs, particularly in plants, are still poorly understood. Here, we studied the activation and localization of the Medicago sativa stress-induced MAPKK (SIMKK)-SIMK module after salt stress. In the inactive state, SIMKK and SIMK co-localized in the cytoplasm and in the nucleus. Upon salt stress, however, a substantial part of the nuclear pool of both SIMKK and SIMK relocated to cytoplasmic compartments. The course of nucleocytoplasmic shuttling of SIMK correlated temporally with the dual phosphorylation of the pTEpY motif. SIMKK function was further studied in Arabidopsis plants overexpressing SIMKK-yellow fluorescent protein (YFP) fusions. SIMKK-YFP plants showed enhanced activation of Arabidopsis MPK3 and MPK6 kinases upon salt treatment and exhibited high sensitivity against salt stress at the seedling stage, although they were salt insensitive during seed germination. Proteomic analysis of SIMKK-YFP overexpressors indicated the differential regulation of proteins directly or indirectly involved in salt stress responses. These proteins included catalase, peroxiredoxin, glutathione S-transferase, nucleoside diphosphate kinase 1, endoplasmic reticulum luminal-binding protein 2, and finally plasma membrane aquaporins. In conclusion, Arabidopsis seedlings overexpressing SIMKK-YFP exhibited higher salt sensitivity consistent with their proteome composition and with the presumptive MPK3/MPK6 hijacking of the salt response pathway.


Asunto(s)
Arabidopsis/metabolismo , Medicago sativa/enzimología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Activación Enzimática , Expresión Génica , Medicago sativa/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Transporte de Proteínas , Sales (Química)/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo
8.
BMC Genomics ; 14: 793, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24228715

RESUMEN

BACKGROUND: Most molecular studies of plant stress tolerance have been performed with Arabidopsis thaliana, although it is not particularly stress tolerant and may lack protective mechanisms required to survive extreme environmental conditions. Thellungiella salsuginea has attracted interest as an alternative plant model species with high tolerance of various abiotic stresses. While the T. salsuginea genome has recently been sequenced, its annotation is still incomplete and transcriptomic information is scarce. In addition, functional genomics investigations in this species are severely hampered by a lack of affordable tools for genome-wide gene expression studies. RESULTS: Here, we report the results of Thellungiella de novo transcriptome assembly and annotation based on 454 pyrosequencing and development and validation of a T. salsuginea microarray. ESTs were generated from a non-normalized and a normalized library synthesized from RNA pooled from samples covering different tissues and abiotic stress conditions. Both libraries yielded partially unique sequences, indicating their necessity to obtain comprehensive transcriptome coverage. More than 1 million sequence reads were assembled into 42,810 unigenes, approximately 50% of which could be functionally annotated. These unigenes were compared to all available Thellungiella genome sequence information. In addition, the groups of Late Embryogenesis Abundant (LEA) proteins, Mitogen Activated Protein (MAP) kinases and protein phosphatases were annotated in detail. We also predicted the target genes for 384 putative miRNAs. From the sequence information, we constructed a 44 k Agilent oligonucleotide microarray. Comparison of same-species and cross-species hybridization results showed superior performance of the newly designed array for T. salsuginea samples. The developed microarrays were used to investigate transcriptional responses of T. salsuginea and Arabidopsis during cold acclimation using the MapMan software. CONCLUSIONS: This study provides the first comprehensive transcriptome information for the extremophile Arabidopsis relative T. salsuginea. The data constitute a more than three-fold increase in the number of publicly available unigene sequences and will greatly facilitate genome annotation. In addition, we have designed and validated the first genome-wide microarray for T. salsuginea, which will be commercially available. Together with the publicly available MapMan software this will become an important tool for functional genomics of plant stress tolerance.


Asunto(s)
Brassicaceae/genética , Genómica , Plantas Tolerantes a la Sal/genética , Transcriptoma , Arabidopsis/genética , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ADN
9.
FEBS J ; 280(2): 681-93, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22726910

RESUMEN

Type 2C protein phosphatases (PP2Cs) form a structurally unique class of Mg(2+)-/Mn(2+)-dependent enzymes. PP2Cs are evolutionary conserved from prokaryotes to higher eukaryotes and play a prominent role in stress signalling. In this review, we focus on the evolution, function and regulation of the plant PP2Cs. Members of a subclass of plant PP2Cs counteract mitogen-activated protein kinase pathways, whereas members of other subfamilies function as co-receptors for the phytohormone abscisic acid. Recent structural analyses of abscisic acid receptors have elucidated the mode of ligand-dependent regulation and substrate targeting.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimología , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Modelos Moleculares , Fosfoproteínas Fosfatasas/clasificación , Fosfoproteínas Fosfatasas/genética , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/genética , Plantas/metabolismo , Proteína Fosfatasa 2C , Estructura Terciaria de Proteína
10.
Methods Mol Biol ; 779: 149-61, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21837565

RESUMEN

Protein phosphorylation by protein kinases can be reversed by the action of protein phosphatases. In plants, the Ser/Thr-specific phosphatases dominate among the protein phosphatase families with the type 2C protein phosphatases (PP2Cs) being the most abundant among them. PP2Cs are monomeric enzymes that require metal cations for their activity and are insensitive to known phosphatase inhibitors. PP2Cs were shown to counteract the mitogen-activated protein kinase (MAP kinase/MAPK) activities in plants and to regulate developmental and stress signaling pathways. Studies of PP2C activities can be performed in vitro using recombinant proteins. The potential substrates of PP2Cs can be tested for dephosphorylation by the phosphatase in vitro. We have found that the stress-induced PP2Cs from alfalfa and Arabidopsis interact with stress-activated MAPKs in yeast two-hybrid (Y2H) screens. Consequently, recombinant MAPKs were employed as substrates for dephosphorylation by selected PP2Cs from different family clusters. The members of the PP2C phosphatase family demonstrated specificity toward the substrate already in vitro, supporting the notion that protein phosphatases are specific enzymes. The PP2C from Arabidopsis thaliana cluster B, Arabidopsis PP2C-type phosphatase (AP2C1), and its homolog from Medicago sativa, Medicago PP2C-type phosphatase (MP2C), were able to dephosphorylate and inactivate MAPKs, whereas the ABSCISIC ACID (ABA)-INSENSITIVE 2 (ABI2) and HOMOLOGY TO ABI1 (HAB1) PP2Cs from the distinct Arabidopsis cluster A were not able to do so. The method described here can be used for the determination of PP2C protein activity and for studying the effect of mutations introduced into their catalytic domains.


Asunto(s)
Arabidopsis/enzimología , Pruebas de Enzimas/métodos , Fosfoproteínas Fosfatasas/metabolismo , Arabidopsis/genética , Caseínas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/aislamiento & purificación , Fosforilación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
11.
PLoS One ; 5(12): e15357, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21203456

RESUMEN

In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK) signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C) that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells.


Asunto(s)
Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Sistema de Señalización de MAP Quinasas , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Epidermis de la Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Diferenciación Celular , Linaje de la Célula , Núcleo Celular/metabolismo , Proliferación Celular , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/fisiología , Fenotipo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Transducción de Señal , Regulación hacia Arriba
12.
Methods Mol Biol ; 479: 247-60, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19083183

RESUMEN

Protein phosphatases act to reverse phosphorylation-related modifications induced by protein kinases. Type 2C protein phosphatases (PP2C) are monomeric Ser/Thr phosphatases that require a metal for their activity and are abundant in prokaryotes and eukaryotes. In plants, such as Medicago and Arabidopsis PP2Cs control several essential processes, including ABA signaling, development, and wound-induced mitogen-activated protein kinase (MAPK) pathways. In vitro assays with recombinant proteins and yeast two-hybrid systems usually provide initial information about putative PP2C substrates; however, these observations have to be verified in vivo. Therefore, a method for transient expression in isolated Arabidopsis suspension cell protoplasts was developed to assay PP2C action in living cells. This system has proven to be very useful in producing active enzymes and their substrates and in performing enzymatic reactions in vivo. Transient gene expression in isolated cells enabled assembly of functional protein kinase cascades and the creation of phosphorylated targets for PP2Cs. The method is based on the co-transformation and transient co-expression of different PP2C proteins with MAPK. It shows that epitope-tagged PP2C and MAPK proteins exhibit high enzymatic activities and produce substantial protein amounts easily monitored by Western blot analysis. Additionally, PP2C phosphatase activities can be directly tested in protein extracts from protoplasts, suggesting a possibility for analysis of activities of new PP2C family members.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimología , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/genética , Células Vegetales , Proteínas de Plantas/genética , Plantas/genética , Proteína Fosfatasa 2C
13.
Mol Biosyst ; 4(8): 799-803, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18633480

RESUMEN

Plant stress hormones, such as jasmonates (JAs) and ethylene (ET) are essential in plant defence against stress conditions. JAs are used in cosmetics and food flavouring, and the recently demonstrated anti-cancer activity of JAs highlights their potential in health protection. It reinforces the need for a better understanding of biosynthetic regulation of JAs. Which mechanisms are involved in the regulation of the biosynthesis of JAs and ET? Production of stress hormones is induced in plants after wounding or herbivore attack. ET is a gaseous compound and plant JAs are oxylipins structurally similar to prostaglandins that are induced upon inflammation or injury in mammals. Wounding activates protein phosphorylation cascades involving mitogen-activated protein kinases (MAPKs). MAPKs regulate ET production. The induction of JA biosynthesis was suggested to require MAPK activation; however the defined roles of MAPKs in JA production remain unclear. Here we will highlight the most recent findings suggesting the regulation of JA biosynthesis and ethylene production by stress activated MAPKs and phosphatases that inactivate these MAPKs.


Asunto(s)
Ciclopentanos/metabolismo , Etilenos/biosíntesis , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/biosíntesis , Proteínas de Plantas/metabolismo , Plantas/enzimología , Monoéster Fosfórico Hidrolasas/metabolismo
14.
Cell ; 130(6): 1044-56, 2007 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17889649

RESUMEN

In plants, cell polarity and tissue patterning are connected by intercellular flow of the phytohormone auxin, whose directional signaling depends on polar subcellular localization of PIN auxin transport proteins. The mechanism of polar targeting of PINs or other cargos in plants is largely unidentified, with the PINOID kinase being the only known molecular component. Here, we identify PP2A phosphatase as an important regulator of PIN apical-basal targeting and auxin distribution. Genetic analysis, localization, and phosphorylation studies demonstrate that PP2A and PINOID both partially colocalize with PINs and act antagonistically on the phosphorylation state of their central hydrophilic loop, hence mediating PIN apical-basal polar targeting. Thus, in plants, polar sorting by the reversible phosphorylation of cargos allows for their conditional delivery to specific intracellular destinations. In the case of PIN proteins, this mechanism enables switches in the direction of intercellular auxin fluxes, which mediate differential growth, tissue patterning, and organogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/embriología , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Polaridad Celular , Endosomas/metabolismo , Genotipo , Proteínas de Transporte de Membrana/genética , Meristema/enzimología , Meristema/metabolismo , Mutación , Fenotipo , Fosfoproteínas Fosfatasas/genética , Fosforilación , Plantas Modificadas Genéticamente/embriología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Plantones/enzimología , Plantones/metabolismo , Transducción de Señal
15.
Plant Cell ; 19(7): 2213-24, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17630279

RESUMEN

Wound signaling pathways in plants are mediated by mitogen-activated protein kinases (MAPKs) and stress hormones, such as ethylene and jasmonates. In Arabidopsis thaliana, the transmission of wound signals by MAPKs has been the subject of detailed investigations; however, the involvement of specific phosphatases in wound signaling is not known. Here, we show that AP2C1, an Arabidopsis Ser/Thr phosphatase of type 2C, is a novel stress signal regulator that inactivates the stress-responsive MAPKs MPK4 and MPK6. Mutant ap2c1 plants produce significantly higher amounts of jasmonate upon wounding and are more resistant to phytophagous mites (Tetranychus urticae). Plants with increased AP2C1 levels display lower wound activation of MAPKs, reduced ethylene production, and compromised innate immunity against the necrotrophic pathogen Botrytis cinerea. Our results demonstrate a key role for the AP2C1 phosphatase in regulating stress hormone levels, defense responses, and MAPK activities in Arabidopsis and provide evidence that the activity of AP2C1 might control the plant's response to B. cinerea.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Ciclopentanos/metabolismo , Etilenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Oxilipinas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Enfermedades de las Plantas/inmunología , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Biomarcadores , Botrytis , Regulación hacia Abajo/genética , Activación Enzimática , Inmunidad Innata , Enfermedades de las Plantas/microbiología , Unión Proteica , Protoplastos/enzimología , Saccharomyces cerevisiae/metabolismo
17.
Cell Biol Int ; 27(3): 257-9, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12681328
18.
J Biol Chem ; 278(21): 18945-52, 2003 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-12646559

RESUMEN

Protein phosphatases of type 2C (PP2Cs) play important roles in eukaryotic signal transduction. In contrast to other eukaryotes, plants such as Arabidopsis have an unusually large group of 69 different PP2C genes. At present, little is known about the functions and substrates of plant PP2Cs. We have previously shown that MP2C, a wound-induced alfalfa PP2C, is a negative regulator of mitogen-activated protein kinase (MAPK) pathways in yeast and plants. In this report, we provide evidence that alfalfa salt stress-inducible MAPK (SIMK) and stress-activated MAPK (SAMK) are activated by wounding and that MP2C is a MAPK phosphatase that directly inactivates SIMK but not the wound-activated MAPK, SAMK. SIMK is inactivated through threonine dephosphorylation of the pTEpY motif, which is essential for MAPK activity. Mutant analysis indicated that inactivation of SIMK depends on the catalytic activity of MP2C. A comparison of MP2C with two other PP2Cs, ABI2 and AtP2CHA, revealed that although all three phosphatases have similar activities toward casein as a substrate, only MP2C is able to dephosphorylate and inactivate SIMK. In agreement with the notion that MP2C interacts directly with SIMK, the MAPK was identified as an interacting partner of MP2C in a yeast two-hybrid screen. MP2C can be immunoprecipitated with SIMK in a complex in vivo and shows direct binding to SIMK in vitro in protein interaction assays. Wound-induced MP2C expression correlates with the time window when SIMK is inactivated, corroborating the notion that MP2C is involved in resetting the SIMK signaling pathway.


Asunto(s)
Medicago sativa/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/fisiología , Proteínas de Plantas , Arabidopsis/enzimología , Arabidopsis/genética , Caseínas/metabolismo , Cicloheximida/farmacología , Ácido Edético/farmacología , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Técnicas de Inmunoadsorción , Medicago sativa/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Ácido Ocadaico/farmacología , Fosfoproteínas Fosfatasas/biosíntesis , Fosfoproteínas Fosfatasas/genética , Fosforilación , Extractos Vegetales , Hojas de la Planta/enzimología , Proteína Fosfatasa 2C , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Mensajero/análisis , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Treonina/metabolismo , Técnicas del Sistema de Dos Híbridos , Vanadatos/farmacología
19.
EMBO J ; 21(13): 3296-306, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12093731

RESUMEN

Mitogen-activated protein kinases (MAPKs) are involved in stress signaling to the actin cytoskeleton in yeast and animals. We have analyzed the function of the stress-activated alfalfa MAP kinase SIMK in root hairs. In epidermal cells, SIMK is predominantly nuclear. During root hair formation, SIMK was activated and redistributed from the nucleus into growing tips of root hairs possessing dense F-actin meshworks. Actin depolymerization by latrunculin B resulted in SIMK relocation to the nucleus. Conversely, upon actin stabilization with jasplakinolide, SIMK co-localized with thick actin cables in the cytoplasm. Importantly, latrunculin B and jasplakinolide were both found to activate SIMK in a root-derived cell culture. Loss of tip-focused SIMK and actin was induced by the MAPK kinase inhibitor UO 126 and resulted in aberrant root hairs. UO 126 inhibited targeted vesicle trafficking and polarized growth of root hairs. In contrast, overexpression of gain-of-function SIMK induced rapid tip growth of root hairs and could bypass growth inhibition by UO 126. These data indicate that SIMK plays a crucial role in root hair tip growth.


Asunto(s)
Depsipéptidos , Sistema de Señalización de MAP Quinasas , Medicago sativa/enzimología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Nicotiana/enzimología , Proteínas de Plantas/fisiología , Raíces de Plantas/enzimología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Actinas/análisis , Transporte Activo de Núcleo Celular/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Butadienos/farmacología , Núcleo Celular/metabolismo , Polaridad Celular , Extensiones de la Superficie Celular/enzimología , Citoplasma/metabolismo , Activación Enzimática/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Medicago sativa/crecimiento & desarrollo , Microscopía por Video , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Nitrilos/farmacología , Péptidos Cíclicos/farmacología , Proteínas de Plantas/antagonistas & inhibidores , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/ultraestructura , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/fisiología , Tiazoles/farmacología , Tiazolidinas , Nicotiana/crecimiento & desarrollo
20.
Plant Cell ; 14(3): 703-11, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11910015

RESUMEN

Plants respond to biotic and abiotic stresses by inducing overlapping sets of mitogen-activated protein kinases (MAPKs) and response genes. To define the mechanisms of how different signals can activate a common signaling pathway, upstream activators of SIMK, a salt stress- and pathogen-induced alfalfa MAPK, were identified. Here, we compare the properties of SIMKK, a MAPK kinase (MAPKK) that mediates the activation of SIMK by salt stress, with those of PRKK, a distantly related novel MAPKK. Although both SIMKK and PRKK show strongest interaction with SIMK, SIMKK can activate SIMK without stimulation by upstream factors. In contrast, PRKK requires activation by an upstream activated MAPKK kinase. SIMKK mediates pathogen elicitor signaling and salt stress, but PRKK transmits only elicitor-induced MAPK activation. Of four tested MAPKs, PRKK activates three of them (SIMK, MMK3, and SAMK) upon elicitor treatment of cells. However, PRKK is unable to activate any MAPK upon salt stress. In contrast, SIMKK activates SIMK and MMK3 in response to elicitor, but it activates only SIMK upon salt stress. These data show that (1) MAPKKs function as convergence points for stress signals, (2) MAPKKs activate multiple MAPKs, and (3) signaling specificity is obtained not only through the inherent affinities of MAPKK-MAPK combinations but also through stress signal-dependent intracellular mechanisms.


Asunto(s)
Medicago sativa/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas de Plantas/genética , Transducción de Señal , Secuencia de Aminoácidos , Clonación Molecular , Expresión Génica , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Medicago sativa/efectos de los fármacos , Medicago sativa/enzimología , Quinasas de Proteína Quinasa Activadas por Mitógenos/aislamiento & purificación , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido , Cloruro de Sodio/farmacología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...