Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Neuroimage ; 276: 120212, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37269959

RESUMEN

Intrinsic coupling modes (ICMs) can be observed in ongoing brain activity at multiple spatial and temporal scales. Two families of ICMs can be distinguished: phase and envelope ICMs. The principles that shape these ICMs remain partly elusive, in particular their relation to the underlying brain structure. Here we explored structure-function relationships in the ferret brain between ICMs quantified from ongoing brain activity recorded with chronically implanted micro-ECoG arrays and structural connectivity (SC) obtained from high-resolution diffusion MRI tractography. Large-scale computational models were used to explore the ability to predict both types of ICMs. Importantly, all investigations were conducted with ICM measures that are sensitive or insensitive to volume conduction effects. The results show that both types of ICMs are significantly related to SC, except for phase ICMs when using measures removing zero-lag coupling. The correlation between SC and ICMs increases with increasing frequency which is accompanied by reduced delays. Computational models produced results that were highly dependent on the specific parameter settings. The most consistent predictions were derived from measures solely based on SC. Overall, the results demonstrate that patterns of cortical functional coupling as reflected in both phase and envelope ICMs are both related, albeit to different degrees, to the underlying structural connectivity in the cerebral cortex.


Asunto(s)
Corteza Cerebral , Hurones , Humanos , Animales , Corteza Cerebral/diagnóstico por imagen , Encéfalo , Mapeo Encefálico/métodos , Electrocorticografía
2.
J R Soc Interface ; 18(183): 20210486, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34665977

RESUMEN

The relationship between network structure and dynamics is one of the most extensively investigated problems in the theory of complex systems of recent years. Understanding this relationship is of relevance to a range of disciplines-from neuroscience to geomorphology. A major strategy of investigating this relationship is the quantitative comparison of a representation of network architecture (structural connectivity, SC) with a (network) representation of the dynamics (functional connectivity, FC). Here, we show that one can distinguish two classes of functional connectivity-one based on simultaneous activity (co-activity) of nodes, the other based on sequential activity of nodes. We delineate these two classes in different categories of dynamical processes-excitations, regular and chaotic oscillators-and provide examples for SC/FC correlations of both classes in each of these models. We expand the theoretical view of the SC/FC relationships, with conceptual instances of the SC and the two classes of FC for various application scenarios in geomorphology, ecology, systems biology, neuroscience and socio-ecological systems. Seeing the organisation of dynamical processes in a network either as governed by co-activity or by sequential activity allows us to bring some order in the myriad of observations relating structure and function of complex networks.


Asunto(s)
Ecología , Ecosistema , Encéfalo
3.
Hum Brain Mapp ; 41(5): 1167-1180, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31746083

RESUMEN

One of the fundamental questions in neuroscience is how brain structure and function are intertwined. MRI-based studies have demonstrated a close relationship between the physical wiring of the brain (structural connectivity) and the associated patterns of synchronization (functional connectivity). However, little is known about the spatial consistency of such a relationship and notably its potential dependence on brain parcellations. In the present study, we performed a comparison of a set of state-of-the-art group-wise brain atlases, with various spatial resolutions, to relate structural and functional connectivity derived from high quality MRI data. We aim to investigate if the definition of brain areas influences the relationship between structural and functional connectivity. We observed that there is a significant effect of brain parcellations, which is mainly driven by the number of areas; there are mixed differences in the SC-FC relationship when compared to purely random parcellations; the influence of the number of areas cannot be attributed solely to the reliability of the connectivity estimates; and beyond the influence of the number of regions, the spatial embedding of the brain (distance effect) can explain a large portion of the observed relationship. As such the choice of a brain parcellation for connectivity analyses remains most likely a matter of convenience.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Atlas como Asunto , Conectoma , Sustancia Gris/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Sustancia Blanca/diagnóstico por imagen
4.
Netw Neurosci ; 3(4): 1038-1050, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31637337

RESUMEN

The anatomical wiring of the brain is a central focus in network neuroscience. Diffusion MRI tractography offers the unique opportunity to investigate the brain fiber architecture in vivo and noninvasively. However, its reliability is still highly debated. Here, we explored the ability of diffusion MRI tractography to match invasive anatomical tract-tracing connectivity data of the ferret brain. We also investigated the influence of several state-of-the-art tractography algorithms on this match to ground truth connectivity data. Tract-tracing connectivity data were obtained from retrograde tracer injections into the occipital, parietal, and temporal cortices of adult ferrets. We found that the relative densities of projections identified from the anatomical experiments were highly correlated with the estimates from all the studied diffusion tractography algorithms (Spearman's rho ranging from 0.67 to 0.91), while only small, nonsignificant variations appeared across the tractography algorithms. These results are comparable to findings reported in mouse and monkey, increasing the confidence in diffusion MRI tractography results. Moreover, our results provide insights into the variations of sensitivity and specificity of the tractography algorithms, and hence into the influence of choosing one algorithm over another.

5.
Netw Neurosci ; 3(2): 589-605, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31157311

RESUMEN

Modularity is a ubiquitous topological feature of structural brain networks at various scales. Although a variety of potential mechanisms have been proposed, the fundamental principles by which modularity emerges in neural networks remain elusive. We tackle this question with a plasticity model of neural networks derived from a purely topological perspective. Our topological reinforcement model acts enhancing the topological overlap between nodes, that is, iteratively allowing connections between non-neighbor nodes with high neighborhood similarity. This rule reliably evolves synthetic random networks toward a modular architecture. Such final modular structure reflects initial "proto-modules," thus allowing to predict the modules of the evolved graph. Subsequently, we show that this topological selection principle might be biologically implemented as a Hebbian rule. Concretely, we explore a simple model of excitable dynamics, where the plasticity rule acts based on the functional connectivity (co-activations) between nodes. Results produced by the activity-based model are consistent with the ones from the purely topological rule in terms of the final network configuration and modules composition. Our findings suggest that the selective reinforcement of topological overlap may be a fundamental mechanism contributing to modularity emergence in brain networks.

6.
Brain Commun ; 1(1): fcz020, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32954263

RESUMEN

Beyond disruption of neuronal pathways, focal stroke lesions induce structural disintegration of distant, yet connected brain regions via retrograde neuronal degeneration. Stroke lesions alter functional brain connectivity and topology in large-scale brain networks. These changes are associated with the degree of clinical impairment and recovery. In contrast, changes of large scale, structural brain networks after stroke are less well reported. We therefore aimed to analyse the impact of focal lesions on the structural connectome after stroke based on data from diffusion-weighted imaging and probabilistic fibre tracking. In total, 17 patients (mean age 64.5 ± 8.4 years) with upper limb motor deficits in the chronic stage after stroke and 21 healthy participants (mean age 64.9 ± 10.3 years) were included. Clinical deficits were evaluated by grip strength and the upper extremity Fugl-Meyer assessment. We calculated global and local graph theoretical measures to characterize topological changes in the structural connectome. Results from our analysis demonstrated significant alterations of network topology in both ipsi- and contralesional, primarily unaffected, hemispheres after stroke. Global efficiency was significantly lower in stroke connectomes as an indicator of overall reduced capacity for information transfer between distant brain areas. Furthermore, topology of structural connectomes was shifted toward a higher degree of segregation as indicated by significantly higher values of global clustering and modularity. On a level of local network parameters, these effects were most pronounced in a subnetwork of cortico-subcortical brain regions involved in motor control. Structural changes were not significantly associated with clinical measures. We propose that the observed network changes in our patients are best explained by the disruption of inter- and intrahemispheric, long white matter fibre tracts connecting distant brain regions. Our results add novel insights on topological changes of structural large-scale brain networks in the ipsi- and contralesional hemisphere after stroke.

7.
PLoS Comput Biol ; 14(4): e1006084, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29630592

RESUMEN

The relationship between the structural connectivity (SC) and functional connectivity (FC) of neural systems is of central importance in brain network science. It is an open question, however, how the SC-FC relationship depends on specific topological features of brain networks or the models used for describing neural dynamics. Using a basic but general model of discrete excitable units that follow a susceptible-excited-refractory activity cycle (SER model), we here analyze how the network activity patterns underlying functional connectivity are shaped by the characteristic topological features of the network. We develop an analytical framework for describing the contribution of essential topological elements, such as common inputs and pacemakers, to the coactivation of nodes, and demonstrate the validity of the approach by comparison of the analytical predictions with numerical simulations of various exemplar networks. The present analytic framework may serve as an initial step for the mechanistic understanding of the contributions of brain network topology to brain dynamics.


Asunto(s)
Encéfalo/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Ciclos de Actividad/fisiología , Biología Computacional , Simulación por Computador , Humanos , Redes Neurales de la Computación
8.
Physiol Rep ; 5(20)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29084839

RESUMEN

Inhibitory propriospinal neurons with diffuse projections onto upper limb motoneurons have been revealed in humans using peripheral nerve stimulation. This system is supposed to mediate descending inhibition to motoneurons, to prevent unwilling muscle activity. However, the corticospinal control onto inhibitory propriospinal neurons has never been investigated so far in humans. We addressed the question whether inhibitory cervical propriospinal neurons receive corticospinal inputs from primary motor (M1) and ventral premotor areas (PMv) using spatial facilitation method. We have stimulated M1 or PMv using transcranial magnetic stimulation (TMS) and/or median nerve whose afferents are known to activate inhibitory propriospinal neurons. Potential input convergence was evaluated by studying the change in monosynaptic reflexes produced in wrist extensor electromyogram (EMG) after isolated and combined stimuli in 17 healthy subjects. Then, to determine whether PMv controlled propriospinal neurons directly or through PMv-M1 interaction, we tested the connectivity between PMv and propriospinal neurons after a functional disruption of M1 produced by paired continuous theta burst stimulation (cTBS). TMS over M1 or PMv produced reflex inhibition significantly stronger on combined stimulations, compared to the algebraic sum of effects induced by isolated stimuli. The extra-inhibition induced by PMv stimulation remained even after cTBS which depressed M1 excitability. The extra-inhibition suggests the existence of input convergence between peripheral afferents and corticospinal inputs onto inhibitory propriospinal neurons. Our results support the existence of direct descending influence from M1 and PMv onto inhibitory propriospinal neurons in humans, possibly though direct corticospinal or via reticulospinal inputs.


Asunto(s)
Corteza Motora/fisiología , Inhibición Neural , Neuronas/fisiología , Tractos Piramidales/fisiología , Adulto , Ritmo beta , Potenciales Evocados Motores , Femenino , Humanos , Masculino , Corteza Motora/citología , Propiocepción , Tractos Piramidales/citología , Reflejo , Estimulación Magnética Transcraneal
9.
Chaos ; 27(4): 047406, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28456166

RESUMEN

Topological features play a major role in the emergence of complex brain network dynamics underlying brain function. Specific topological properties of brain networks, such as their modular organization, have been widely studied in recent years and shown to be ubiquitous across spatial scales and species. However, the mechanisms underlying the generation and maintenance of such features are still unclear. Using a minimalistic network model with excitable nodes and discrete deterministic dynamics, we studied the effects of a local Hebbian plasticity rule on global network topology. We found that, despite the simple model set-up, the plasticity rule was able to reorganize the global network topology into a modular structure. The structural reorganization was accompanied by enhanced correlations between structural and functional connectivity, and the final network organization reflected features of the dynamical model. These findings demonstrate the potential of simple plasticity rules for structuring the topology of brain connectivity.


Asunto(s)
Modelos Neurológicos , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Simulación por Computador , Factores de Tiempo
10.
PLoS Comput Biol ; 12(10): e1005031, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27736900

RESUMEN

Brain computation relies on effective interactions between ensembles of neurons. In neuroimaging, measures of functional connectivity (FC) aim at statistically quantifying such interactions, often to study normal or pathological cognition. Their capacity to reflect a meaningful variety of patterns as expected from neural computation in relation to cognitive processes remains debated. The relative weights of time-varying local neurophysiological dynamics versus static structural connectivity (SC) in the generation of FC as measured remains unsettled. Empirical evidence features mixed results: from little to significant FC variability and correlation with cognitive functions, within and between participants. We used a unified approach combining multivariate analysis, bootstrap and computational modeling to characterize the potential variety of patterns of FC and SC both qualitatively and quantitatively. Empirical data and simulations from generative models with different dynamical behaviors demonstrated, largely irrespective of FC metrics, that a linear subspace with dimension one or two could explain much of the variability across patterns of FC. On the contrary, the variability across BOLD time-courses could not be reduced to such a small subspace. FC appeared to strongly reflect SC and to be partly governed by a Gaussian process. The main differences between simulated and empirical data related to limitations of DWI-based SC estimation (and SC itself could then be estimated from FC). Above and beyond the limited dynamical range of the BOLD signal itself, measures of FC may offer a degenerate representation of brain interactions, with limited access to the underlying complexity. They feature an invariant common core, reflecting the channel capacity of the network as conditioned by SC, with a limited, though perhaps meaningful residual variability.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Cognición/fisiología , Conectoma/métodos , Modelos Neurológicos , Modelos Estadísticos , Simulación por Computador , Femenino , Humanos , Masculino , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Adulto Joven
11.
PLoS Comput Biol ; 12(8): e1005025, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27504629

RESUMEN

In this study, we investigate if phase-locking of fast oscillatory activity relies on the anatomical skeleton and if simple computational models informed by structural connectivity can help further to explain missing links in the structure-function relationship. We use diffusion tensor imaging data and alpha band-limited EEG signal recorded in a group of healthy individuals. Our results show that about 23.4% of the variance in empirical networks of resting-state functional connectivity is explained by the underlying white matter architecture. Simulating functional connectivity using a simple computational model based on the structural connectivity can increase the match to 45.4%. In a second step, we use our modeling framework to explore several technical alternatives along the modeling path. First, we find that an augmentation of homotopic connections in the structural connectivity matrix improves the link to functional connectivity while a correction for fiber distance slightly decreases the performance of the model. Second, a more complex computational model based on Kuramoto oscillators leads to a slight improvement of the model fit. Third, we show that the comparison of modeled and empirical functional connectivity at source level is much more specific for the underlying structural connectivity. However, different source reconstruction algorithms gave comparable results. Of note, as the fourth finding, the model fit was much better if zero-phase lag components were preserved in the empirical functional connectome, indicating a considerable amount of functionally relevant synchrony taking place with near zero or zero-phase lag. The combination of the best performing alternatives at each stage in the pipeline results in a model that explains 54.4% of the variance in the empirical EEG functional connectivity. Our study shows that large-scale brain circuits of fast neural network synchrony strongly rely upon the structural connectome and simple computational models of neural activity can explain missing links in the structure-function relationship.


Asunto(s)
Imagen de Difusión Tensora/métodos , Electroencefalografía/métodos , Modelos Neurológicos , Red Nerviosa/fisiología , Algoritmos , Biología Computacional , Humanos
12.
Hum Brain Mapp ; 37(11): 4112-4128, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27400836

RESUMEN

Huntington's disease (HD) is a genetic neurological disorder resulting in cognitive and motor impairments. We evaluated the longitudinal changes of functional connectivity in sensorimotor, associative and limbic cortico-basal ganglia networks. We acquired structural MRI and resting-state fMRI in three visits one year apart, in 18 adult HD patients, 24 asymptomatic mutation carriers (preHD) and 18 gender- and age-matched healthy volunteers from the TRACK-HD study. We inferred topological changes in functional connectivity between 182 regions within cortico-basal ganglia networks using graph theory measures. We found significant differences for global graph theory measures in HD but not in preHD. The average shortest path length (L) decreased, which indicated a change toward the random network topology. HD patients also demonstrated increases in degree k, reduced betweeness centrality bc and reduced clustering C. Changes predominated in the sensorimotor network for bc and C and were observed in all circuits for k. Hubs were reduced in preHD and no longer detectable in HD in the sensorimotor and associative networks. Changes in graph theory metrics (L, k, C and bc) correlated with four clinical and cognitive measures (symbol digit modalities test, Stroop, Burden and UHDRS). There were no changes in graph theory metrics across sessions, which suggests that these measures are not reliable biomarkers of longitudinal changes in HD. preHD is characterized by progressive decreasing hub organization, and these changes aggravate in HD patients with changes in local metrics. HD is characterized by progressive changes in global network interconnectivity, whose network topology becomes more random over time. Hum Brain Mapp 37:4112-4128, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Ganglios Basales/diagnóstico por imagen , Ganglios Basales/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/fisiopatología , Adulto , Mapeo Encefálico , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Enfermedad de Huntington/genética , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Tamaño de los Órganos , Síntomas Prodrómicos , Descanso , Índice de Severidad de la Enfermedad
13.
PLoS One ; 10(9): e0137278, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26406245

RESUMEN

The use of mutual information as a similarity measure in agglomerative hierarchical clustering (AHC) raises an important issue: some correction needs to be applied for the dimensionality of variables. In this work, we formulate the decision of merging dependent multivariate normal variables in an AHC procedure as a Bayesian model comparison. We found that the Bayesian formulation naturally shrinks the empirical covariance matrix towards a matrix set a priori (e.g., the identity), provides an automated stopping rule, and corrects for dimensionality using a term that scales up the measure as a function of the dimensionality of the variables. Also, the resulting log Bayes factor is asymptotically proportional to the plug-in estimate of mutual information, with an additive correction for dimensionality in agreement with the Bayesian information criterion. We investigated the behavior of these Bayesian alternatives (in exact and asymptotic forms) to mutual information on simulated and real data. An encouraging result was first derived on simulations: the hierarchical clustering based on the log Bayes factor outperformed off-the-shelf clustering techniques as well as raw and normalized mutual information in terms of classification accuracy. On a toy example, we found that the Bayesian approaches led to results that were similar to those of mutual information clustering techniques, with the advantage of an automated thresholding. On real functional magnetic resonance imaging (fMRI) datasets measuring brain activity, it identified clusters consistent with the established outcome of standard procedures. On this application, normalized mutual information had a highly atypical behavior, in the sense that it systematically favored very large clusters. These initial experiments suggest that the proposed Bayesian alternatives to mutual information are a useful new tool for hierarchical clustering.


Asunto(s)
Imagen por Resonancia Magnética , Modelos Teóricos , Teorema de Bayes , Femenino , Humanos , Masculino
14.
Neuroimage ; 111: 65-75, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25682944

RESUMEN

The relationship between structural connectivity (SC) and functional connectivity (FC) in the human brain can be studied using magnetic resonance imaging (MRI). However many of the underlying physiological mechanisms and parameters cannot be directly observed with MRI. This limitation has motivated the recent use of various computational models meant to bridge the gap. However their absolute and relative explanatory power and the properties that actually drive that power remain insufficiently characterized. We performed an extensive comparison of seven mainstream computational models predicting FC from SC. We investigated the extent to which simulated FC could predict empirical FC. We also applied graph theory to the entire set of simulated and empirical FCs in order to further characterize the relationships between the models and the MRI data. The comparison was performed at three different spatial scales. We found that (i) there were significant effects of scale and model on predictive power; (ii) among all models, the simplest model, the simultaneous autoregressive (SAR) model, was found to consistently perform better than the other models; (iii) the SAR also appeared more 'central' from a graph theory perspective; and (iv) empirical FC only appeared weakly correlated with simulated FCs, and was featured as 'peripheral' in the graph analysis. We conclude that the substantial differences existing between these computational models have little impact on their predictive power for FC and that their capacity to predict FC from SC appears to be both moderate and essentially underlined by a simple core linear process embodied by the SAR model.


Asunto(s)
Encéfalo , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Modelos Neurológicos , Red Nerviosa , Adulto , Encéfalo/anatomía & histología , Encéfalo/fisiología , Simulación por Computador , Femenino , Humanos , Masculino , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología
15.
Sci Rep ; 5: 7870, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25598302

RESUMEN

The relationship between the structural connectivity (SC) and functional connectivity (FC) of neural systems is a central focus in brain network science. It is an open question, however, how strongly the SC-FC relationship depends on specific topological features of brain networks or the models used for describing excitable dynamics. Using a basic model of discrete excitable units that follow a susceptible - excited - refractory dynamic cycle (SER model), we here analyze how functional connectivity is shaped by the topological features of a neural network, in particular its modularity. We compared the results obtained by the SER model with corresponding simulations by another well established dynamic mechanism, the Fitzhugh-Nagumo model, in order to explore general features of the SC-FC relationship. We showed that apparent discrepancies between the results produced by the two models can be resolved by adjusting the time window of integration of co-activations from which the FC is derived, providing a clearer distinction between co-activations and sequential activations. Thus, network modularity appears as an important factor shaping the FC-SC relationship across different dynamic models.


Asunto(s)
Encéfalo/fisiología , Red Nerviosa/fisiología , Redes Neurales de la Computación , Animales , Humanos
16.
IEEE Trans Med Imaging ; 34(1): 27-37, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25069111

RESUMEN

Advances in magnetic resonance imaging (MRI) allow to gain critical insight into the structure of neural networks and their functional dynamics. To relate structural connectivity [as quantified by diffusion-weighted imaging (DWI) tractography] and functional connectivity [as obtained from functional MRI (fMRI)], increasing emphasis has been put on computational models of brain activity. In the present study, we use structural equation modeling (SEM) with structural connectivity to predict functional connectivity. The resulting model takes the simple form of a spatial simultaneous autoregressive model (sSAR), whose parameters can be estimated in a Bayesian framework. On synthetic data, results showed very good accuracy and reliability of the inference process. On real data, we found that the sSAR performed significantly better than two other reference models as well as than structural connectivity alone, but that the Bayesian procedure did not bring significant improvement in fit compared to two simpler approaches. Nonetheless, we also found that the values of the region-specific parameters inferred using Bayesian inference differed significantly across resting-state networks. These results demonstrate 1) that a simple abstract model is able to perform better that more complex models based on more realistic assumptions, 2) that the parameters of the sSAR can be estimated and can potentially be used as biomarkers, but also 3) that the sSAR, while being the best-performing model, is at best still a very crude model of the relationship between structure and function in MRI.


Asunto(s)
Encéfalo/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Adulto , Teorema de Bayes , Femenino , Humanos , Masculino , Modelos Neurológicos , Adulto Joven
17.
Neuroimage ; 101: 778-86, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25111470

RESUMEN

Cognitive decline in normal ageing and Alzheimer's disease (AD) emerges from functional disruption in the coordination of large-scale brain systems sustaining cognition. Integrity of these systems can be examined by correlation methods based on analysis of resting state functional magnetic resonance imaging (fMRI). Here we investigate functional connectivity within the default mode network (DMN) in normal ageing and AD using resting state fMRI. Images from young and elderly controls, and patients with AD were processed using spatial independent component analysis to identify the DMN. Functional connectivity was quantified using integration and indices derived from graph theory. Four DMN sub-systems were identified: Frontal (medial and superior), parietal (precuneus-posterior cingulate, lateral parietal), temporal (medial temporal), and hippocampal (bilateral). There was a decrease in antero-posterior interactions (lower global efficiency), but increased interactions within the frontal and parietal sub-systems (higher local clustering) in elderly compared to young controls. This decreased antero-posterior integration was more pronounced in AD patients compared to elderly controls, particularly in the precuneus-posterior cingulate region. Conjoint knowledge of integration measures and graph indices in the same data helps in the interpretation of functional connectivity results, as comprehension of one measure improves with understanding of the other. The approach allows for complete characterisation of connectivity changes and could be applied to other resting state networks and different pathologies.


Asunto(s)
Envejecimiento/fisiología , Enfermedad de Alzheimer/fisiopatología , Encéfalo/fisiopatología , Conectoma/métodos , Interpretación Estadística de Datos , Red Nerviosa/fisiopatología , Adulto , Anciano , Encéfalo/fisiología , Entropía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Adulto Joven
18.
PLoS Comput Biol ; 10(3): e1003530, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24651524

RESUMEN

Investigating the relationship between brain structure and function is a central endeavor for neuroscience research. Yet, the mechanisms shaping this relationship largely remain to be elucidated and are highly debated. In particular, the existence and relative contributions of anatomical constraints and dynamical physiological mechanisms of different types remain to be established. We addressed this issue by systematically comparing functional connectivity (FC) from resting-state functional magnetic resonance imaging data with simulations from increasingly complex computational models, and by manipulating anatomical connectivity obtained from fiber tractography based on diffusion-weighted imaging. We hypothesized that FC reflects the interplay of at least three types of components: (i) a backbone of anatomical connectivity, (ii) a stationary dynamical regime directly driven by the underlying anatomy, and (iii) other stationary and non-stationary dynamics not directly related to the anatomy. We showed that anatomical connectivity alone accounts for up to 15% of FC variance; that there is a stationary regime accounting for up to an additional 20% of variance and that this regime can be associated to a stationary FC; that a simple stationary model of FC better explains FC than more complex models; and that there is a large remaining variance (around 65%), which must contain the non-stationarities of FC evidenced in the literature. We also show that homotopic connections across cerebral hemispheres, which are typically improperly estimated, play a strong role in shaping all aspects of FC, notably indirect connections and the topographic organization of brain networks.


Asunto(s)
Encéfalo/fisiología , Adulto , Mapeo Encefálico/métodos , Simulación por Computador , Imagen de Difusión por Resonancia Magnética , Femenino , Hemodinámica , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Modelos Neurológicos , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Reproducibilidad de los Resultados , Adulto Joven
19.
Brain Connect ; 4(3): 181-92, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24575752

RESUMEN

Functional brain networks are sets of cortical, subcortical, and cerebellar regions whose neuronal activities are synchronous over multiple time scales. Spatial independent component analysis (sICA) is a widespread approach that is used to identify functional networks in the human brain from functional magnetic resonance imaging (fMRI) resting-state data, and there is now a general agreement regarding the cortical regions involved in each network. It is well known that these cortical regions are preferentially connected with specific subcortical functional territories; however, subcortical components (SC) have not been observed whether in a robust or in a reproducible manner using sICA. This article presents a new method to analyze resting-state fMRI data that enables robust and reproducible association of subcortical regions with well-known patterns of cortical regions. The approach relies on the hypothesis that the time course in subcortical regions is similar to that in cortical regions belonging to the same network. First, sICA followed by hierarchical clustering is performed on cortical time series to extract group functional cortical networks. Second, these networks are complemented with related subcortical areas based on the similarity of their time courses, using an individual general linear model and a random-effect group analysis. Two independent resting-state fMRI datasets were processed, and the SC of both datasets overlapped by 69% to 99% depending on the network, showing the reproducibility and the robustness of our approach. The relationship between SC and functional cortical networks was consistent with functional territories (sensorimotor, associative, and limbic) from an immunohistochemical atlas of the basal ganglia.


Asunto(s)
Mapeo Encefálico/métodos , Cerebelo/fisiología , Corteza Cerebral/fisiología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Descanso/fisiología , Adulto , Algoritmos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Vías Nerviosas/fisiología , Reproducibilidad de los Resultados , Adulto Joven
20.
PLoS One ; 8(7): e67444, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23894288

RESUMEN

How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called "the dual intertwined rings architecture") that relates the functional specialization of cortical networks to their spatial distribution over the cerebral cortex (or "corticotopy"). Recent results suggest that the resting state networks (RSNs) are organized into two large families: 1) a sensorimotor family that includes visual, somatic, and auditory areas and 2) a large association family that comprises parietal, temporal, and frontal regions and also includes the default mode network. We used two large databases of resting state fMRI data, from which we extracted 32 robust RSNs. We estimated: (1) the RSN functional roles by using a projection of the results on task based networks (TBNs) as referenced in large databases of fMRI activation studies; and (2) relationship of the RSNs with the Brodmann Areas. In both classifications, the 32 RSNs are organized into a remarkable architecture of two intertwined rings per hemisphere and so four rings linked by homotopic connections. The first ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with interspersed bimodal cortices (auditory-visual, visual-somatic and auditory-somatic, abbreviated as VSA ring). The second ring integrates distant parietal, temporal and frontal regions (PTF ring) through a network of association fiber tracts which closes the ring anatomically and ensures a functional continuity within the ring. The PTF ring relates association cortices specialized in attention, language and working memory, to the networks involved in motivation and biological regulation and rhythms. This "dual intertwined architecture" suggests a dual integrative process: the VSA ring performs fast real-time multimodal integration of sensorimotor information whereas the PTF ring performs multi-temporal integration (i.e., relates past, present, and future representations at different temporal scales).


Asunto(s)
Encéfalo/fisiología , Encéfalo/anatomía & histología , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...