Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 52(1): 679-95, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25270370

RESUMEN

Rhodopsin is a G protein-coupled receptor essential for vision and rod photoreceptor viability. Disease-associated rhodopsin mutations, such as P23H rhodopsin, cause rhodopsin protein misfolding and trigger endoplasmic reticulum (ER) stress, activating the unfolded protein response (UPR). The pathophysiologic effects of ER stress and UPR activation on photoreceptors are unclear. Here, by examining P23H rhodopsin knock-in mice, we found that the UPR inositol-requiring enzyme 1 (IRE1) signaling pathway is strongly activated in misfolded rhodopsin-expressing photoreceptors. IRE1 significantly upregulated ER-associated protein degradation (ERAD), triggering pronounced P23H rhodopsin degradation. Rhodopsin protein loss occurred as soon as photoreceptors developed, preceding photoreceptor cell death. By contrast, IRE1 activation did not affect JNK signaling or rhodopsin mRNA levels. Interestingly, pro-apoptotic signaling from the PERK UPR pathway was also not induced. Our findings reveal that an early and significant pathophysiologic effect of ER stress in photoreceptors is the highly efficient elimination of misfolded rhodopsin protein. We propose that early disruption of rhodopsin protein homeostasis in photoreceptors could contribute to retinal degeneration.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Rodopsina/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Estrés del Retículo Endoplásmico , Técnicas de Sustitución del Gen , Inmunoprecipitación , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/metabolismo , Retina/patología , Retina/ultraestructura , Segmento Interno de las Células Fotorreceptoras Retinianas/metabolismo , Segmento Interno de las Células Fotorreceptoras Retinianas/patología , Segmento Interno de las Células Fotorreceptoras Retinianas/ultraestructura , Rodopsina/genética , Transducción de Señal , Factor de Transcripción CHOP/metabolismo , Ubiquitinación
2.
Mol Biol Cell ; 25(9): 1411-20, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24623724

RESUMEN

Endoplasmic reticulum (ER) protein misfolding activates the unfolded protein response (UPR) to help cells cope with ER stress. If ER homeostasis is not restored, UPR promotes cell death. The mechanisms of UPR-mediated cell death are poorly understood. The PKR-like endoplasmic reticulum kinase (PERK) arm of the UPR is implicated in ER stress-induced cell death, in part through up-regulation of proapoptotic CCAAT/enhancer binding protein homologous protein (CHOP). Chop((-)/(-)) cells are partially resistant to ER stress-induced cell death, and CHOP overexpression alone does not induce cell death. These findings suggest that additional mechanisms regulate cell death downstream of PERK. Here we find dramatic suppression of antiapoptosis XIAP proteins in response to chronic ER stress. We find that PERK down-regulates XIAP synthesis through eIF2α and promotes XIAP degradation through ATF4. Of interest, PERK's down-regulation of XIAP occurs independently of CHOP activity. Loss of XIAP leads to increased cell death, whereas XIAP overexpression significantly enhances resistance to ER stress-induced cell death, even in the absence of CHOP. Our findings define a novel signaling circuit between PERK and XIAP that operates in parallel with PERK to CHOP induction to influence cell survival during ER stress. We propose a "two-hit" model of ER stress-induced cell death involving concomitant CHOP up-regulation and XIAP down-regulation both induced by PERK.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Apoptosis , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Respuesta de Proteína Desplegada , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Regulación hacia Abajo , Células HEK293 , Humanos , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción CHOP/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/genética , eIF-2 Quinasa/metabolismo
3.
Invest Ophthalmol Vis Sci ; 53(12): 7590-9, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23074209

RESUMEN

PURPOSE: Endoplasmic reticulum (ER) stress has been observed in animal models of retinitis pigmentosa expressing P23H rhodopsin. We compared levels of tightly induced ER stress genes, Binding of immunoglobulin protein (BiP) and CCAAT/enhancer-binding protein homologous protein (Chop), in seven additional models of retinal degeneration arising from genetic or environmental causes. METHODS: Retinas from transgenic S334ter rhodopsin (lines 3, 4, and 5) and Royal College of Surgeons (RCS and RCS-p+) rats from postnatal (P) days 10 to 120 were analyzed. In a constant light (CL) model of retinal degeneration, BALB/c mice were exposed to 15,000 lux of CL for 0 to 8 hours. Retinal tissues from three to eight animals per experimental condition were collected for histologic and molecular analyses. RESULTS: S334ter animals revealed significant increases in BiP, S334ter-3 (3.3× at P15), S334ter-4 (4× at P60), and S334ter-5 (2.2× at P90), and Chop, S334ter-3 (1.3× at P15), S334ter-4 (1.5× at P30), and S334ter-5 (no change), compared with controls. P23H-3 rats showed significant increase of BiP at P60 (2.3×) and Chop (1.6×). RCS and RCS-p+ rats showed significant increases in BiP at P60 (2.4×) and P20 (1.8×), respectively, but no statistically significant changes in Chop. BALB/c mice showed increases in BiP (1.5×) and Chop (1.3×) after 4 hours of CL. Increased levels of these ER stress markers correlated with photoreceptor cell loss. CONCLUSIONS: Our study reveals surprising increases in BiP and to a lesser degree Chop in retinal degenerations arising from diverse causes. We propose that manipulation of ER stress responses may be helpful in treating many environmental and heritable forms of retinal degeneration.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica , Oligopéptidos/genética , ARN/genética , Degeneración Retiniana/genética , Factor de Transcripción CHOP/genética , Animales , Modelos Animales de Enfermedad , Electroforesis en Gel de Poliacrilamida , Exposición a Riesgos Ambientales/efectos adversos , Ratones , Ratones Endogámicos BALB C , Oligopéptidos/biosíntesis , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Reacción en Cadena de la Polimerasa , Ratas , Ratas Sprague-Dawley , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Rodopsina/genética , Rodopsina/metabolismo , Factor de Transcripción CHOP/biosíntesis , Proteína X Asociada a bcl-2
4.
Invest Ophthalmol Vis Sci ; 53(11): 7159-66, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22956602

RESUMEN

PURPOSE: Many rhodopsin mutations that cause retinitis pigmentosa produce misfolded rhodopsin proteins that are retained within the endoplasmic reticulum (ER) and cause photoreceptor cell death. Activating transcription factor 6 (ATF6) and protein kinase RNA-like endoplasmic reticulum kinase (PERK) control intracellular signaling pathways that maintain ER homeostasis. The aim of this study was to investigate how ATF6 and PERK signaling affected misfolded rhodopsin in cells, which could identify new molecular therapies to treat retinal diseases associated with ER protein misfolding. METHODS: To examine the effect of ATF6 on rhodopsin, wild-type (WT) or mutant rhodopsins were expressed in cells expressing inducible human ATF6f, the transcriptional activator domain of ATF6. Induction of ATF6f synthesis rapidly activated downstream genes. To examine PERK's effect on rhodopsin, WT or mutant rhodopsins were expressed in cells expressing a genetically altered PERK protein, Fv2E-PERK. Addition of the dimerizing molecule (AP20187) rapidly activated Fv2E-PERK and downstream genes. By use of these strategies, it was examined how selective ATF6 or PERK signaling affected the fate of WT and mutant rhodopsins. RESULTS: ATF6 significantly reduced T17M, P23H, Y178C, C185R, D190G, K296E, and S334ter rhodopsin protein levels in the cells with minimal effects on monomeric WT rhodopsin protein levels. By contrast, the PERK pathway reduced both levels of WT, mutant rhodopsins, and many other proteins in the cell. CONCLUSIONS: This study indicates that selectively activating ATF6 or PERK prevents mutant rhodopsin from accumulating in cells. ATF6 signaling may be especially useful in treating retinal degenerative diseases arising from rhodopsin misfolding by preferentially clearing mutant rhodopsin and abnormal rhodopsin aggregates.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retinitis Pigmentosa/metabolismo , Rodopsina/metabolismo , Transducción de Señal/fisiología , eIF-2 Quinasa/metabolismo , Membrana Celular/metabolismo , Endorribonucleasas/metabolismo , Células HEK293 , Homeostasis/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Mutagénesis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Retina/metabolismo , Retina/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Rodopsina/genética , Respuesta de Proteína Desplegada/fisiología
5.
Mol Biol Cell ; 23(5): 758-70, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22219383

RESUMEN

Endoplasmic reticulum (ER) is responsible for folding of secreted and membrane proteins in eukaryotic cells. Disruption of ER protein folding leads to ER stress. Chronic ER stress can cause cell death and is proposed to underlie the pathogenesis of many human diseases. Inositol-requiring enzyme 1 (IRE1) directs a key unfolded protein response signaling pathway that controls the fidelity of ER protein folding. IRE1 signaling may be particularly helpful in preventing chronic ER stress and cell injury by alleviating protein misfolding in the ER. To examine this, we used a chemical-genetic approach to selectively activate IRE1 in mammalian cells and tested how artificial IRE1 signaling affected the fate of misfolded P23H rhodopsin linked to photoreceptor cell death. We found that IRE1 signaling robustly promoted the degradation of misfolded P23H rhodopsin without affecting its wild-type counterpart. We also found that IRE1 used both proteasomal and lysosomal degradation pathways to remove P23H rhodopsin. Surprisingly, when one degradation pathway was compromised, IRE1 signaling could still promote misfolded rhodopsin degradation using the remaining pathway. Last, we showed that IRE1 signaling also reduced levels of several other misfolded rhodopsins with lesser effects on misfolded cystic fibrosis transmembrane conductance regulator. Our findings reveal the diversity of proteolytic mechanisms used by IRE1 to eliminate misfolded rhodopsin.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endorribonucleasas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Rodopsina/metabolismo , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico , Células HEK293 , Humanos , Pliegue de Proteína , Rodopsina/química , Rodopsina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...