Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Angew Chem Int Ed Engl ; 59(20): 7906-7914, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32129920

RESUMEN

Herein, we present a new class of singlet fission (SF) materials based on diradicaloids of carbene scaffolds, namely cyclic (alkyl)(amino)carbenes (CAACs). Our modular approach allows the tuning of two key SF criteria: the steric factor and the diradical character. In turn, we modified the energy landscapes of excited states in a systematic manner to accommodate the needs for SF. We report the first example of intermolecular SF in solution by dimer self-assembly at cryogenic temperatures.

3.
Chem Sci ; 11(16): 4138-4149, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-34760147

RESUMEN

We elucidate why some electron rich-olefins such as tetrathiafulvalene (TTF) or paraquat (1,1'-dimethyl-4,4'-bipyridinylidene) form persistent radical cations, whereas others such as the dimer of N,N'-dimethyl benzimidazolin-2-ylidene (benzNHC) do not. Specifically, three heterodimers derived from cyclic (alkyl) (amino) carbenes (CAAC) with N,N'-dimethyl imidazolin-2-ylidene (NHC), N,N'-dimethyl imidazolidin-2-ylidene (saNHC) and N-methyl benzothiazolin-2-ylidene (btNHC) are reported. Whereas the olefin radical cations with the NHC and btNHC are isolable, the NHC compound with a saturated backbone (saNHC) disproportionates instead to the biscation and olefin. Furthermore, the electrochemical properties of the electron-rich olefins derived from the dimerization of the saNHC and btNHC were assessed. Based on the experiments, we propose a general computational method to model the electrochemical potentials and disproportionation equilibrium. This method, which achieves an accuracy of 0.07 V (0.06 V with calibration) in reference to the experimental values, allows for the first time to rationalize and predict the (in)stability of olefin radical cations towards disproportionation. The combined results reveal that the stability of heterodimeric olefin radical cations towards disproportionation is mostly due to aromaticity. In contrast, homodimeric radical cations are in principle isolable, if lacking steric bulk in the 2,2' positions of the heterocyclic monomers. Rigid tethers increase accordingly the stability of homodimeric radical cations, whereas the electronic effects of substituents seem much less important for the disproportionation equilibrium.

4.
Angew Chem Int Ed Engl ; 58(51): 18547-18551, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31529583

RESUMEN

A novel method for the N-N bond cleavage of trimethylsilyl diazomethane is reported for the synthesis of terminal nitride complexes. The lithium salt of trimethylsilyl diazomethane was used to generate a rare terminal nitrilimine transition metal complex with partially occupied d-orbitals. This iron complex 2 was characterized by CHN combustion analysis, 1 H and 13 C NMR spectroscopic analysis, single-crystal X-ray crystallography, SQUID magnetometry, 57 Fe Mössbauer spectroscopy, and computational analysis. The combined results suggest a high-spin d 6 (S=2) electronic configuration and an allenic structure of the nitrilimine ligand. Reduction of 2 results in release of the nitrilimine ligand and formation of the iron(I) complex 3, which was characterized by CHN combustion analysis, 1 H NMR spectroscopic analysis, and single-crystal X-ray crystallography. Treatment of 2 with fluoride salts quantitatively yields the diamagnetic FeIV nitride complex 4, with concomitant formation of cyanide and trimethylsilyl fluoride through N-N bond cleavage.

5.
Chem Sci ; 9(28): 6107-6117, 2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30090299

RESUMEN

Organic singlet diradicaloids promise application in non-linear optics, electronic devices and singlet fission. The stabilization of carbon allotropes/cumulenes (C1, C2, C4) by carbenes has been equally an area of high activity. Combining these fields, we showed recently that carbene scaffolds allow as well for the design of diradicaloids. Herein, we report a comprehensive computational investigation (CASSCF/NEVPT2; fractional occupation DFT) on the electronic properties of carbene-bridge-carbene type diradicaloids. We delineate how to adjust the properties of these ensembles through the choice of carbene and bridge and show that already a short C2 bridge results in remarkable diradicaloid character. The choice of the carbene separately tunes the energies of the S1 and T1 excited states, whereas the bridge adjusts the overall energy level of the excited states. Accordingly, we develop guidelines on how to tailor the electronic properties of these molecules. Of particular note, fractional occupation DFT is an excellent tool to predict singlet-triplet gaps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...