Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Malar J ; 22(1): 376, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087335

RESUMEN

BACKGROUND: Plasmodium falciparum genetic diversity can add information on transmission intensity and can be used to track control and elimination interventions. METHODS: Dried blood spots (DBS) were collected from patients who were recruited for a P. falciparum malaria therapeutic efficacy trial in three malaria endemic sites in Ethiopia from October to December 2015, and November to December 2019. qPCR-confirmed infections were subject to amplicon sequencing of polymorphic markers ama1-D3, csp, cpp, cpmp, msp7. Genetic diversity, the proportion of multiclonal infections, multiplicity of infection, and population structure were analysed. RESULTS: Among 198 samples selected for sequencing, data was obtained for 181 samples. Mean MOI was 1.38 (95% CI 1.24-1.53) and 17% (31/181) of infections were polyclonal. Mean He across all markers was 0.730. Population structure was moderate; populations from Metema and Metehara 2015 were very similar to each other, but distinct from Wondogent 2015 and Metehara 2019. CONCLUSION: The high level of parasite genetic diversity and moderate population structure in this study suggests frequent gene flow of parasites among sites. The results obtained can be used as a baseline for additional parasite genetic diversity and structure studies, aiding in the formulation of appropriate control strategies in Ethiopia.


Asunto(s)
Malaria Falciparum , Parásitos , Humanos , Animales , Plasmodium falciparum/genética , Etiopía/epidemiología , Variación Genética , Malaria Falciparum/parasitología , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Malar J ; 21(1): 267, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109748

RESUMEN

BACKGROUND: Plasmodium falciparum is the most serious, genetically most complex and fastest-evolving malaria parasite. Information on genetic diversity of this parasite would guide policy decision and malaria elimination endeavors. This study explored the temporal dynamics of P. falciparum population in two time points in Metehara, east-central Ethiopia. METHODS: The participants were quantitative real-time polymerase chain reaction-confirmed patients who were recruited for uncomplicated falciparum malaria therapeutic efficacy test in 2015 and 2019. Dry blood spot samples were analysed by the nested PCR to genotype P. falciparum merozoite surface protein (msp1, msp2) and glutamate-rich protein (glurp) genes. RESULTS: While msp1, msp2 and glurp genotypes were successfully detected in 26(89.7%), 24(82.8%) and 14(48.3%) of 2015 samples (n = 29); the respective figures for 2019 (n = 41) were 31(68.3%), 39(95.1%), 25(61.0%). In 2015, the frequencies of K1, MAD20 and RO33 allelic families of msp1, and FC27 and IC/3D7 of msp2 were 19(73.1%), 8(30.6%), 14(53.8%), 21(87.5%), 12(50.5%); and in 2019 it was 15(48.4%), 19(61.3%), 15(48.4%), 30(76.9%), 27(69.2%) respectively. MAD20 has shown dominance over both K1 and RO33 in 2019 compared to the proportion in 2015. Similarly, although FC27 remained dominant, there was shifting trend in the frequency of IC/3D7 from 50.5% in 2015 to 69.2% in 2019. The multiplicity of infection (MOI) and expected heterozygosity index (He) in 2015 and 2019 were respectively [1.43 ± 0.84] and [1.15 ± 0.91], 0.3 and 0.03 for msp1. However, there was no significant association between MOI and age or parasitaemia in both time points. CONCLUSION: The lower genetic diversity in P. falciparum population in the two time points and overall declining trend as demonstrated by the lower MOI and He may suggest better progress in malaria control in Metehara. But, the driving force and selective advantage of switching to MAD20 dominance over the other two msp1 allelic families, and the dynamics within msp2 alleles needs further investigation.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Antígenos de Protozoos/genética , Etiopía/epidemiología , Variación Genética , Ácido Glutámico , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Proteínas de la Membrana/genética , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Infect Drug Resist ; 14: 4833-4847, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34819737

RESUMEN

PURPOSE: This study was conducted to investigate the drug resistance mutations and genetic diversity of HIV-1 in ART experienced patients in South Omo, Ethiopia. PATIENTS AND METHODS: A cross-sectional study conducted on 253 adult patients attending ART clinics for ≥6 months in South Omo. Samples with VL ≥1000 copies/mL were considered as virological failures (VF) and their reverse transcriptase gene codons 90-234 were sequenced using Illumina MiSeq. MinVar was used for the identification of the subtypes and drug resistance mutations. Phylogenetic tree was constructed by neighbor-joining method using the maximum likelihood model. RESULTS: The median duration of ART was 51 months and 18.6% (47/253) of the patients exhibited VF. Of 47 viraemic patients, the genome of 41 were sequenced and subtype C was dominant (87.8%) followed by recombinant subtype BC (4.9%), M-09-CPX (4.9) and BF1 (2.4%). Of 41 genotyped subjects, 85.4% (35/41) had at least one ADR mutation. Eighty-one percent (33/41) of viraemic patients harbored NRTI resistance mutations, and 48.8% (20/41) were positive for NNRTI resistance mutations, with 43.9% dual resistance mutations. Among NRTI resistance mutations, M184V (73.2%), K219Q (63.4%) and T215 (56.1%) complex were the most mutated positions, while the most common NNRTI resistance mutations were K103N (24.4%), K101E, P225H and V108I 7.5% each. Active tuberculosis (aOR=13, 95% CI= 3.46-29.69), immunological failure (aOR=3.61, 95% CI=1.26-10.39), opportunistic infections (aOR=8.39, 95% CI= 1.75-40.19), and poor adherence were significantly associated with virological failure, while rural residence (aOR 2.37; 95% CI: 1.62-9.10, P= 0.05), immunological failures (aOR 2.37; 95% CI: 1.62-9.10, P= 0.05) and high viral load (aOR 16; 95% CI: 5.35 51.59, P <0.001) were predictors of ADR mutation among the ART experienced and viraemic study subjects. CONCLUSION: The study revealed considerable prevalence of VF and ADR mutation with the associated risk indicators. Regular virological monitoring and drug resistance genotyping methods should be implemented for better ART treatment outcomes of the nation.

4.
Malar J ; 20(1): 394, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34627242

RESUMEN

BACKGROUND: Rapid diagnostic tests (RDT) are commonly used for the diagnosis of malaria caused by Plasmodium falciparum. However, false negative results of RDT caused by genetic variation of P. falciparum histidine-rich protein 2 and 3 genes (pfhrp2/3) threaten existing malaria case management and control efforts. The main objective of this study was to investigate the genetic variations of the pfhrp2/3 genes. METHODS: A cross-sectional study was conducted from malaria symptomatic individuals in 2018 in Assosa zone, Ethiopia. Finger-prick blood samples were collected for RDT and microscopic examination of thick and thin blood films. Dried blood spots (DBS) were used for genomic parasite DNA extraction and molecular detection. Amplification of parasite DNA was made by quantitative PCR. DNA amplicons of pfhrp2/3 were purified and sequenced. RESULTS: The PfHRP2 amino acid repeat type isolates were less conserved compared to the PfHRP3 repeat type. Eleven and eight previously characterized PfHRP2 and PfHRP3 amino acid repeat types were identified, respectively. Type 1, 4 and 7 repeats were shared by PfHRP2 and PfHRP3 proteins. Type 2 repeats were found only in PfHRP2, while types 16 and 17 were found only in PfHRP3 with a high frequency in all isolates. 18 novel repeat types were found in PfHRP2 and 13 novel repeat types were found in PfHRP3 in single or multiple copies per isolate. The positivity rate for PfHRP2 RDT was high, 82.9% in PfHRP2 and 84.3% in PfHRP3 sequence isolates at parasitaemia levels > 250 parasites/µl. Using the Baker model, 100% of the isolates in group A (If product of types 2 × type 7 repeats ≥ 100) and 73.7% of the isolates in group B (If product of types 2 × type 7 repeats 50-99) were predicted to be detected by PfHRP2 RDT at parasitaemia level > 250 parasite/µl. CONCLUSION: The findings of this study indicate the presence of different PfHRP2 and PfHRP3 amino acid repeat including novel repeats in P. falciparum from Ethiopia. These results indicate that there is a need to closely monitor the performance of PfHRP2 RDT associated with the genetic variation of the pfhrp2 and pfhrp3 gene in P. falciparum isolates at the country-wide level.


Asunto(s)
Antígenos de Protozoos/genética , Malaria Falciparum/diagnóstico , Plasmodium falciparum/química , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Antígenos de Protozoos/química , Etiopía , Variación Genética , Humanos , Plasmodium falciparum/genética , Proteínas Protozoarias/química , Factores de Tiempo
5.
Malar J ; 20(1): 312, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34246262

RESUMEN

BACKGROUND: Red blood cell invasion by the Plasmodium vivax merozoite requires interaction between the Duffy antigen receptor for chemokines (DARC) and the P. vivax Duffy-binding protein II (PvDBPII). Given that the disruption of this interaction prevents P. vivax blood-stage infection, a PvDBP-based vaccine development has been well recognized. However, the polymorphic nature of PvDBPII prevents a strain transcending immune response and complicates attempts to design a vaccine. METHODS: Twenty-three P. vivax clinical isolates collected from three areas of Ethiopia were sequenced at the pvdbpII locus. A total of 392 global pvdbpII sequences from seven P. vivax endemic countries were also retrieved from the NCBI archive for comparative analysis of genetic diversity, departure from neutrality, linkage disequilibrium, genetic differentiation, PvDBP polymorphisms, recombination and population structure of the parasite population. To establish a haplotype relationship a network was constructed using the median joining algorithm. RESULTS: A total of 110 variable sites were found, of which 44 were parsimony informative. For Ethiopian isolates there were 12 variable sites of which 10 were parsimony informative. These parsimony informative variants resulted in 10 nonsynonymous mutations. The overall haplotype diversity for global isolates was 0.9596; however, the haplotype diversity was 0.874 for Ethiopia. Fst values for genetic revealed Ethiopian isolates were closest to Indian isolates as well as to Sri Lankan and Sudanese isolates but further away from Mexican, Papua New Guinean and South Korean isolates. There was a total of 136 haplotypes from the 415 global isolates included for this study. Haplotype prevalence ranged from 36.76% to 0.7%, from this 74.2% were represented by single parasite isolates. None of the Ethiopian isolates grouped with the Sal I reference haplotype. From the total observed nonsynonymous mutations 13 mapped to experimentally verified epitope sequences. Including 10 non-synonymous mutations from Ethiopia. However, all the polymorphic regions in Ethiopian isolates were located away from DARC, responsible for junction formation. CONCLUSION: The results of this study are concurrent with the multivalent vaccine approach to design an effective treatment. However, the presence of novel haplotypes in Ethiopian isolates that were not shared by other global sequences warrant further investigation.


Asunto(s)
Antígenos de Protozoos , Haplotipos , Malaria/epidemiología , Plasmodium vivax/genética , Proteínas Protozoarias , Receptores de Superficie Celular , Etiopía/epidemiología , Humanos , Malaria/parasitología , Malaria/prevención & control
6.
PLoS One ; 15(11): e0241807, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33152025

RESUMEN

Deletions in Plasmodium falciparum histidine rich protein 2(pfhrp2) gene threaten the usefulness of the most widely used HRP2-based malaria rapid diagnostic tests (mRDTs) that cross react with its structural homologue, PfHRP3. Parasites with deleted pfhrp2/3 genes remain undetected and untreated due to 'false-negative' RDT results. As Ethiopia recently launched malaria elimination by 2030 in certain selected areas, the availability of RDTs and the scale of their use have rapidly increased in recent years. Thus, it is important to explore the presence and prevalence of deletion in the target genes, pfhrp2 and pfhrp3. From a total of 189 febrile patients visited Adama Malaria Diagnostic centre, sixty-four microscopically-and polymerase chain reaction (PCR)-confirmed P. falciparum clinical isolates were used to determine the frequency of pfhrp2/3 gene deletions. Established PCR assays were applied to DNA extracted from blood spotted onto filter papers to amplify across pfhrp2/3 exons and flanking regions. However, analysis of deletions in pfhrp2, pfhrp3 and flanking genomic regions was successful for 50 of the samples. The pfhrp2 gene deletion was fixed in the population with all 50(100%) isolates presenting a deletion variant. This deletion extended downstream towards the Pf3D7 0831900 (MAL7PI.230) gene in 11/50 (22%) cases. In contrast, only 2/50 (4%) of samples had deletions for the Pf3D7 0831700 (MALPI.228) gene, upstream of pfhrp2. Similarly, the pfhrp3 gene was deleted in all isolates (100%), while 40% of the isolates had an extension of the deletion to the downstream flanking region that codes for Pf3D7 13272400 (MAL13PI.485).The pfhrp3 deletion also extended upstream to Pf3D7 081372100 (MAL13PI.475) region in 49/50 (95%) of the isolates, exhibiting complete absence of the locus. Although all samples showed deletions of pfhrp2 exon regions, amplification of an intron region was successful in five cases. Two different repeat motifs in the intron regions were observed in the samples tested. Pfhrp2/3 gene deletions are fixed in Ethiopia and this will likely reduce the effectiveness of PfHRP2-based mRDTs. It will be important to determine the sensitivity PfHRP 2/3-based RDTs in these populations and conduct a countrywide survey to determine the extent of these deletions and its effect on routine RDT-based malaria diagnosis.


Asunto(s)
Antígenos de Protozoos/genética , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Eliminación de Secuencia , Adolescente , Adulto , Niño , Pruebas Diagnósticas de Rutina , Etiopía/epidemiología , Femenino , Técnicas de Genotipaje , Humanos , Malaria Falciparum/parasitología , Masculino , Repeticiones de Microsatélite , Persona de Mediana Edad , Tasa de Mutación , Reacción en Cadena de la Polimerasa , Prevalencia , Sensibilidad y Especificidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA