Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38541314

RESUMEN

This article reports the results of an investigation into the activity concentration of natural radionuclides in raw building materials for underground parking lots, together with the assessment of the radiation hazard for the public related to exposure to ionizing radiations. To this purpose, high-purity germanium (HPGe) γ-ray spectrometry was employed in order to quantify the average specific activity of 226Ra, 232Th, and 40K natural radioisotopes. With the aim to assess any possible radiological health risk for the population, the absorbed γ-dose rate (D), the annual effective dose equivalent outdoor (AEDEout) and indoor (AEDEin), the activity concentration index (I), and the alpha index (Iα) were also estimated, resulting in values that were lower than the maximum recommended ones for humans. Finally, the extent of the correlations existing between the observed radioactivity and radiological parameters and of these parameters with the analyzed samples was quantified through statistical analyses, including Pearson's correlation, a principal component analysis (PCA), and a hierarchical cluster analysis (HCA). As a result, three clusters of the investigated samples were recognized based on their chemical composition and mineralogical nature. Noteworthily, this paper covers a certain gap in science since its topic does not appear in literature in this form. Thus, the authors underline the importance of this work to global knowledge in the environmental research and public health fields.


Asunto(s)
Monitoreo de Radiación , Radiactividad , Radio (Elemento) , Contaminantes Radiactivos del Suelo , Humanos , Monitoreo de Radiación/métodos , Radioisótopos/análisis , Salud Radiológica , Espectrometría gamma , Materiales de Construcción/análisis , Torio/análisis , Radioisótopos de Potasio/análisis , Radio (Elemento)/análisis , Contaminantes Radiactivos del Suelo/análisis
2.
Sci Rep ; 13(1): 10205, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353605

RESUMEN

The design of semiconductor-based photonic devices requires precise knowledge of the refractive index of the optical materials, a not constant parameter over the operating temperature range. However, the variation of the refractive index with the temperature, the thermo-optic coefficient, is itself temperature-dependent. A precise characterization of the thermo-optic coefficient in a wide temperature range is therefore essential for the design of nonlinear optical devices, active and passive integrated photonic devices and, more in general, for the semiconductor technology explored at different wavelengths, from the visible domain to the infrared or ultraviolet spectrum. In this paper, after an accurate ellipsometric and micro-Raman spectroscopy characterization, the temperature dependence of the thermo-optic coefficient ([Formula: see text]) for 4H-SiC and GaN in a wide range of temperature between room temperature to T = 500 K in the visible range spectrum, at a wavelength of λ = 632.8 nm, is experimentally evaluated. For this purpose, using the samples as a Fabry-Perot cavity, an interferometric technique is employed. The experimental results, for both semiconductors, show a linear dependence with a high determination coefficient, R2 of 0.9648 and 0.958, for 4H-SiC and GaN, respectively, in the considered temperature range.


Asunto(s)
Óptica y Fotónica , Refractometría , Temperatura , Luz , Semiconductores
3.
Artículo en Inglés | MEDLINE | ID: mdl-36078754

RESUMEN

In this article, an investigation of the natural radioactivity content of pyroclastic products from Mt. Etna, eastern Sicily, Southern Italy, was carried out. In particular, the assessment of the average activity concentration of the investigated radionuclides, related to the mineralogical phase composition of the analyzed samples, and the radiological health risk for the population, was performed. High Purity Germanium (HPGe) gamma-ray spectrometry was employed in order to quantify the average specific activity of 226Ra, 232Th, and 40K natural radioisotopes. The absorbed gamma dose rate (D), the radium equivalent activity (Raeq), the hazard indices (Hin and Hex), the annual effective dose equivalent outdoor (AEDEout), and the excess lifetime cancer risk (ELCR) were also estimated in order to assess any possible radiological hazard for the population. In our case, they were found to be lower than the maximum recommended values for the population members, thus reasonably excluding radiological hazard effects. Moreover, the identification of the source of the aforementioned naturally occurring radionuclides was attempted by X-ray Diffraction (XRD) and Micro-Raman Scattering (MRS), thereby recognizing the main radioisotope-bearing minerals present in the investigated pyroclastic products. Finally, Pearson correlation, Principal Component Analysis (PCA), and Hierarchical Cluster Analysis (HCA) were performed by processing observed radioactivity and radiological parameters in order to determine their correlation with the sampling locations.


Asunto(s)
Monitoreo de Radiación , Radiactividad , Radio (Elemento) , Contaminantes Radiactivos del Suelo , Radioisótopos de Potasio/análisis , Monitoreo de Radiación/métodos , Radioisótopos/análisis , Radio (Elemento)/análisis , Sicilia , Contaminantes Radiactivos del Suelo/análisis , Espectrometría gamma , Torio/análisis
4.
Sci Rep ; 12(1): 4809, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314709

RESUMEN

The refractive index and its variation with temperature, i.e. the thermo-optic coefficient, are basic optical parameters for all those semiconductors that are used in the fabrication of linear and non-linear opto-electronic devices and systems. Recently, 4H single-crystal silicon carbide (4H-SiC) and gallium nitride (GaN) have emerged as excellent building materials for high power and high-temperature electronics, and wide parallel applications in photonics can be consequently forecasted in the near future, in particular in the infrared telecommunication band of λ = 1500-1600 nm. In this paper, the thermo-optic coefficient (dn/dT) is experimentally measured in 4H-SiC and GaN substrates, from room temperature to 480 K, at the wavelength of 1550 nm. Specifically, the substrates, forming natural Fabry-Perot etalons, are exploited within a simple hybrid fiber free-space optical interferometric system to take accurate measurements of the transmitted optical power in the said temperature range. It is found that, for both semiconductors, dn/dT is itself remarkably temperature-dependent, in particular quadratically for GaN and almost linearly for 4H-SiC.

5.
Artículo en Inglés | MEDLINE | ID: mdl-34831901

RESUMEN

In the present article, a case study is reported regarding an investigation carried out in order to assess radioactivity concentration, heavy metals pollution and mineralogy of a beach stretch extending from Soverato to Squillace municipalities of the Ionian coast of Calabria, South of Italy, a popular tourist destination, especially in summer. The analysis of radionuclides contents was performed by using a High Purity Germanium (HPGe) gamma-ray detector, in order to quantify the average specific activity of 226Ra, 232Th and 40K natural radionuclides and 137Cs anthropogenic radioisotope. The absorbed dose rate and the annual effective dose equivalent radiological hazard indices were also estimated. Furthermore, X-ray Fluorescence (XRF) spectrometry measurements were carried out for the quantitative elemental analysis of the sand, in order to investigate any possible chemical pollution by heavy metals. For this aim, different indices such as Enrichment Factor (EF), Geoaccumulation Index (Igeo), Contamination Factor (CF) and Pollution Load Index (PLI) were applied to estimate the level of toxicity imposed on the ecosystem by the detected heavy metals. Finally, in order to identify the crystalline mineral components of the investigated sand samples, X-ray Diffraction (XRD) and Micro-Raman Scattering (MRS) measurements were carried out.


Asunto(s)
Metales Pesados , Radiactividad , Ecosistema , Monitoreo del Ambiente , Contaminación Ambiental , Metales Pesados/análisis
6.
ACS Appl Mater Interfaces ; 13(6): 7324-7333, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33529012

RESUMEN

Carbon-based nanomaterials, such as carbon dots (CDs) and graphene (Gr), feature outstanding optical and electronic properties. Hence, their integration in optoelectronic and photonic devices is easier thanks to their low dimensionality and offers the possibility to reach high-quality performances. In this context, the combination of CDs and Gr into new nanocomposite materials CDs/Gr can further improve their optoelectronic properties and eventually create new ones, paving the way for the development of advanced carbon nanotechnology. In this work, we have thoroughly investigated the structural and emission properties of CDs deposited on single-layer and bilayer graphene lying on a SiO2/Si substrate. A systematic Raman analysis points out that bilayer (BL) graphene grown by chemical vapor deposition does not always respect the Bernal (AB) stacking, but it is rather a mixture of twisted bilayer (t-BL) featuring domains with different twist angles. Moreover, in-depth micro-photoluminescence measurements, combined with atomic force microscopy (AFM) morphological analysis, show that CD emission efficiency is strongly depleted by the presence of graphene and in particular is dependent on the number of layers as well as on the twist angle of BL graphene. Finally, we propose a model which explains these results on the basis of photoinduced charge-transfer processes, taking into account the energy levels of the hybrid nanosystem formed by coupling CDs with t-BL/SiO2.

7.
Nanotechnology ; 29(9): 095604, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29283108

RESUMEN

This work demonstrates that upon anodic polarization in an aqueous fluoride-containing electrolyte, TiO2 nanotube array films can be formed with a well-defined crystalline phase, rather than an amorphous one. The crystalline phase was obtained avoiding any high temperature annealing. We studied the formation of nanotubes in an HF/H2O medium and the development of crystalline grains on the nanotube wall, and we found a facile way to achieve crystalline TiO2 nanotube arrays through a one-step anodization. The crystallinity of the film was influenced by the synthesis parameters, and the optimization of the electrolyte composition and anodization conditions (applied voltage and time) were carried out. For comparison purposes, crystalline anatase TiO2 nanotubes were also prepared by thermal treatment of amorphous nanotubes grown in an organic bath (ethylene glycol/NH4F/H2O). The morphology and the crystallinity of the nanotubes were studied by field emission gun-scanning electron microscopy (FEG-SEM) and Raman spectroscopy, whereas the electrochemical and semiconducting properties were analyzed by means of linear sweep voltammetry, impedance spectroscopy, and Mott-Schottky plots. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) allowed us to determine the surface composition and the electronic structure of the samples and to correlate them with the electrochemical data. The optimal conditions to achieve a crystalline phase with high donor concentration are defined.

8.
Beilstein J Nanotechnol ; 6: 2028-38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26665073

RESUMEN

Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp(2) carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 °C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 × 10(5) S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 °C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.

9.
Chemphyschem ; 11(9): 1925-31, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20468022

RESUMEN

We demonstrate that the crystalline quality of multi-walled carbon nanotubes (MWCNTs) is better estimated by the apparent activation energy of the oxidation reaction, obtained by kinetic analysis in quasi-isothermal conditions, than by the peak-temperature position in the derivative mass loss curves. This is proven by the existence of a good correlation, reported for the first time herein, between apparent activation energy and G'-band to D-band intensity ratio derived from micro-Raman spectroscopy, which is largely accepted as an indicator of the overall MWCNT crystalline quality. In contrast, no clear reliance is found between G'/D intensity ratio and the peak-temperature position in the derivative mass loss curves. These conclusions were drawn after investigation of a large number of commercially available and laboratory prepared MWCNTs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...