Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IUCrJ ; 10(Pt 3): 253-260, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36892542

RESUMEN

Macromolecular crystallography is a well established method in the field of structural biology and has led to the majority of known protein structures to date. After focusing on static structures, the method is now under development towards the investigation of protein dynamics through time-resolved methods. These experiments often require multiple handling steps of the sensitive protein crystals, e.g. for ligand-soaking and cryo-protection. These handling steps can cause significant crystal damage, and hence reduce data quality. Furthermore, in time-resolved experiments based on serial crystallography, which use micrometre-sized crystals for short diffusion times of ligands, certain crystal morphologies with small solvent channels can prevent sufficient ligand diffusion. Described here is a method that combines protein crystallization and data collection in a novel one-step process. Corresponding experiments were successfully performed as a proof-of-principle using hen egg-white lysozyme and crystallization times of only a few seconds. This method, called JINXED (Just IN time Crystallization for Easy structure Determination), promises high-quality data due to the avoidance of crystal handling and has the potential to enable time-resolved experiments with crystals containing small solvent channels by adding potential ligands to the crystallization buffer, simulating traditional co-crystallization approaches.


Asunto(s)
Proteínas , Cristalografía por Rayos X , Ligandos , Cristalización/métodos , Solventes
2.
Plant Physiol ; 190(3): 2033-2044, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35997573

RESUMEN

Chitin is a homopolymer of ß-(1,4)-linked N-acetyl-D-glucosamine (GlcNAc) and a major structural component of fungal cell walls. In plants, chitin acts as a microbe-associated molecular pattern (MAMP) that is recognized by lysin motif (LysM)-containing plant cell surface-localized pattern recognition receptors (PRRs) that activate a plethora of downstream immune responses. To deregulate chitin-induced plant immunity and successfully establish infection, many fungal pathogens secrete LysM domain-containing effector proteins during host colonization. The LysM effector Ecp6 from the tomato (Solanum lycopersicum) leaf mold fungus Cladosporium fulvum can outcompete plant PRRs for chitin binding because two of its three LysM domains cooperate to form a composite groove with ultra-high (pM) chitin-binding affinity. However, most functionally characterized LysM effectors contain only two LysMs, including Magnaporthe oryzae MoSlp1, Verticillium dahliae Vd2LysM, and Colletotrichum higginsianum ChElp1 and ChElp2. Here, we performed modeling, structural, and functional analyses to investigate whether such dual-domain LysM effectors can also form ultra-high chitin-binding affinity grooves through intramolecular LysM dimerization. However, our study suggests that intramolecular LysM dimerization does not occur. Rather, our data support the occurrence of intermolecular LysM dimerization for these effectors, associated with a substantially lower chitin binding affinity than monitored for Ecp6. Interestingly, the intermolecular LysM dimerization allows for the formation of polymeric complexes in the presence of chitin. Possibly, such polymers may precipitate at infection sites to eliminate chitin oligomers, and thus suppress the activation of chitin-induced plant immunity.


Asunto(s)
Quitina , Solanum lycopersicum , Quitina/metabolismo , Dimerización , Proteínas Fúngicas/metabolismo , Inmunidad de la Planta , Solanum lycopersicum/metabolismo , Enfermedades de las Plantas/microbiología
3.
Mol Plant Pathol ; 22(6): 683-693, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33797163

RESUMEN

Chitin is a major structural component of fungal cell walls and acts as a microbe-associated molecular pattern (MAMP) that, on recognition by a plant host, triggers the activation of immune responses. To avoid the activation of these responses, the Septoria tritici blotch (STB) pathogen of wheat, Zymoseptoria tritici, secretes LysM effector proteins. Previously, the LysM effectors Mg1LysM and Mg3LysM were shown to protect fungal hyphae against host chitinases. Furthermore, Mg3LysM, but not Mg1LysM, was shown to suppress chitin-induced reactive oxygen species (ROS) production. Whereas initially a third LysM effector gene was disregarded as a presumed pseudogene, we now provide functional data to show that this gene also encodes a LysM effector, named Mgx1LysM, that is functional during wheat colonization. While Mg3LysM confers a major contribution to Z. tritici virulence, Mgx1LysM and Mg1LysM contribute to Z. tritici virulence with smaller effects. All three LysM effectors display partial functional redundancy. We furthermore demonstrate that Mgx1LysM binds chitin, suppresses the chitin-induced ROS burst, and is able to protect fungal hyphae against chitinase hydrolysis. Finally, we demonstrate that Mgx1LysM is able to undergo chitin-induced polymerization. Collectively, our data show that Z. tritici utilizes three LysM effectors to disarm chitin-triggered wheat immunity.


Asunto(s)
Ascomicetos/fisiología , Quitina/metabolismo , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Triticum/microbiología , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/inmunología , Triticum/inmunología , Virulencia
4.
Acta Crystallogr D Struct Biol ; 77(Pt 3): 347-356, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33645538

RESUMEN

Haloalkane dehalogenases (EC 3.8.1.5) are microbial enzymes that catalyse the hydrolytic conversion of halogenated compounds, resulting in a halide ion, a proton and an alcohol. These enzymes are used in industrial biocatalysis, bioremediation and biosensing of environmental pollutants or for molecular tagging in cell biology. The novel haloalkane dehalogenase DpaA described here was isolated from the psychrophilic and halophilic bacterium Paraglaciecola agarilytica NO2, which was found in marine sediment collected from the East Sea near Korea. Gel-filtration experiments and size-exclusion chromatography provided information about the dimeric composition of the enzyme in solution. The DpaA enzyme was crystallized using the sitting-drop vapour-diffusion method, yielding rod-like crystals that diffracted X-rays to 2.0 Šresolution. Diffraction data analysis revealed a case of merohedral twinning, and subsequent structure modelling and refinement resulted in a tetrameric model of DpaA, highlighting an uncommon multimeric nature for a protein belonging to haloalkane dehalogenase subfamily I.


Asunto(s)
Alteromonadaceae/enzimología , Proteínas Bacterianas/química , Hidrolasas/química , Biodegradación Ambiental , Dominio Catalítico , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Multimerización de Proteína , Alineación de Secuencia
5.
Nat Plants ; 6(11): 1365-1374, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33139860

RESUMEN

During colonization of their hosts, pathogens secrete effector proteins to promote disease development through various mechanisms. Increasing evidence shows that the host microbiome plays a crucial role in health, and that hosts actively shape their microbiomes to suppress disease. We proposed that pathogens evolved to manipulate host microbiomes to their advantage in turn. Here, we show that the previously identified virulence effector VdAve1, secreted by the fungal plant pathogen Verticillium dahliae, displays antimicrobial activity and facilitates colonization of tomato and cotton through the manipulation of their microbiomes by suppressing antagonistic bacteria. Moreover, we show that VdAve1, and also the newly identified antimicrobial effector VdAMP2, are exploited for microbiome manipulation in the soil environment, where the fungus resides in absence of a host. In conclusion, we demonstrate that a fungal plant pathogen uses effector proteins to modulate microbiome compositions inside and outside the host, and propose that pathogen effector catalogues represent an untapped resource for new antibiotics.


Asunto(s)
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Microbiota , Enfermedades de las Plantas/microbiología , Gossypium/crecimiento & desarrollo , Gossypium/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Microscopía Electrónica de Rastreo , Raíces de Plantas/microbiología , Microbiología del Suelo , Transcriptoma , Xilema/metabolismo
6.
PLoS Pathog ; 16(6): e1008652, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32574207

RESUMEN

Plants trigger immune responses upon recognition of fungal cell wall chitin, followed by the release of various antimicrobials, including chitinase enzymes that hydrolyze chitin. In turn, many fungal pathogens secrete LysM effectors that prevent chitin recognition by the host through scavenging of chitin oligomers. We previously showed that intrachain LysM dimerization of the Cladosporium fulvum effector Ecp6 confers an ultrahigh-affinity binding groove that competitively sequesters chitin oligomers from host immune receptors. Additionally, particular LysM effectors are found to protect fungal hyphae against chitinase hydrolysis during host colonization. However, the molecular basis for the protection of fungal cell walls against hydrolysis remained unclear. Here, we determined a crystal structure of the single LysM domain-containing effector Mg1LysM of the wheat pathogen Zymoseptoria tritici and reveal that Mg1LysM is involved in the formation of two kinds of dimers; a chitin-dependent dimer as well as a chitin-independent homodimer. In this manner, Mg1LysM gains the capacity to form a supramolecular structure by chitin-induced oligomerization of chitin-independent Mg1LysM homodimers, a property that confers protection to fungal cell walls against host chitinases.


Asunto(s)
Ascomicetos/química , Quitina/química , Proteínas Fúngicas/química , Hifa/química , Multimerización de Proteína , Ascomicetos/genética , Ascomicetos/metabolismo , Quitina/genética , Quitina/metabolismo , Cladosporium/química , Cladosporium/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifa/genética , Hifa/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Estructura Cuaternaria de Proteína , Triticum/genética , Triticum/metabolismo , Triticum/microbiología
7.
Acta Crystallogr D Struct Biol ; 75(Pt 8): 743-752, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31373573

RESUMEN

The haloacid dehalogenase (HAD) superfamily is one of the largest known groups of enzymes and the majority of its members catalyze the hydrolysis of phosphoric acid monoesters into a phosphate ion and an alcohol. Despite the fact that sequence similarity between HAD phosphatases is generally very low, the members of the family possess some characteristic features, such as a Rossmann-like fold, HAD signature motifs or the requirement for Mg2+ ion as an obligatory cofactor. This study focuses on a new hypothetical HAD phosphatase from Thermococcus thioreducens. The protein crystallized in space group P21212, with unit-cell parameters a = 66.3, b = 117.0, c = 33.8 Å, and the crystals contained one molecule in the asymmetric unit. The protein structure was determined by X-ray crystallography and was refined to 1.75 Šresolution. The structure revealed a putative active site common to all HAD members. Computational docking into the crystal structure was used to propose substrates of the enzyme. The activity of this thermophilic enzyme towards several of the selected substrates was confirmed at temperatures of 37°C as well as 60°C.


Asunto(s)
Hidrolasas/química , Monoéster Fosfórico Hidrolasas/química , Thermococcus/enzimología , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X/métodos , Cinética , Modelos Moleculares , Especificidad por Sustrato
8.
J Biol Chem ; 293(39): 15043-15054, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30054276

RESUMEN

Although EcoR124 is one of the better-studied Type I restriction-modification enzymes, it still presents many challenges to detailed analyses because of its structural and functional complexity and missing structural information. In all available structures of its motor subunit HsdR, responsible for DNA translocation and cleavage, a large part of the HsdR C terminus remains unresolved. The crystal structure of the C terminus of HsdR, obtained with a crystallization chaperone in the form of pHluorin fusion and refined to 2.45 Å, revealed that this part of the protein forms an independent domain with its own hydrophobic core and displays a unique α-helical fold. The full-length HsdR model, based on the WT structure and the C-terminal domain determined here, disclosed a proposed DNA-binding groove lined by positively charged residues. In vivo and in vitro assays with a C-terminal deletion mutant of HsdR supported the idea that this domain is involved in complex assembly and DNA binding. Conserved residues identified through sequence analysis of the C-terminal domain may play a key role in protein-protein and protein-DNA interactions. We conclude that the motor subunit of EcoR124 comprises five structural and functional domains, with the fifth, the C-terminal domain, revealing a unique fold characterized by four conserved motifs in the IC subfamily of Type I restriction-modification systems. In summary, the structural and biochemical results reported here support a model in which the C-terminal domain of the motor subunit HsdR of the endonuclease EcoR124 is involved in complex assembly and DNA binding.


Asunto(s)
Proteínas de Unión al ADN/química , Desoxirribonucleasas de Localización Especificada Tipo I/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Secuencia de Aminoácidos , Fenómenos Biofísicos , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Conformación Proteica , Dominios Proteicos/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética
9.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 9): 672-6, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27599856

RESUMEN

The HsdR subunit of the type I restriction-modification system EcoR124I is responsible for the translocation as well as the restriction activity of the whole complex consisting of the HsdR, HsdM and HsdS subunits, and while crystal structures are available for the wild type and several mutants, the C-terminal domain comprising approximately 150 residues was not resolved in any of these structures. Here, three fusion constructs with the GFP variant pHluorin developed to overexpress, purify and crystallize the C-terminal domain of HsdR are reported. The shortest of the three encompassed HsdR residues 887-1038 and yielded crystals that belonged to the orthorhombic space group C2221, with unit-cell parameters a = 83.42, b = 176.58, c = 126.03 Å, α = ß = γ = 90.00° and two molecules in the asymmetric unit (VM = 2.55 Å(3) Da(-1), solvent content 50.47%). X-ray diffraction data were collected to a resolution of 2.45 Å.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo I/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Proteínas Fluorescentes Verdes/química , Subunidades de Proteína/química , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Escherichia coli/química , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Difracción de Rayos X
10.
Sci Rep ; 5: 18292, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26669854

RESUMEN

Glycoside hydrolase (GH) family 3 ß-N-acetylglucosaminidases widely exist in the filamentous fungi, which may play a key role in chitin metabolism of fungi. A multi-domain GH family 3 ß-N-acetylglucosaminidase from Rhizomucor miehei (RmNag), exhibiting a potential N-acetyltransferase region, has been recently reported to show great potential in industrial applications. In this study, the crystal structure of RmNag was determined at 2.80 Å resolution. The three-dimensional structure of RmNag showed four distinctive domains, which belong to two distinguishable functional regions--a GH family 3 ß-N-acetylglucosaminidase region (N-terminal) and a N-acetyltransferase region (C-terminal). From structural and functional analysis, the C-terminal region of RmNag was identified as a unique tandem array linking general control non-derepressible 5 (GCN5)-related N-acetyltransferase (GNAT), which displayed glucosamine N-acetyltransferase activity. Structural analysis of this glucosamine N-acetyltransferase region revealed that a unique glucosamine binding pocket is located in the pantetheine arm binding terminal region of the conserved CoA binding pocket, which is different from all known GNAT members. This is the first structural report of a glucosamine N-acetyltransferase, which provides novel structural information about substrate specificity of GNATs. The structural and functional features of this multi-domain ß-N-acetylglucosaminidase could be useful in studying the catalytic mechanism of GH family 3 proteins.


Asunto(s)
Acetiltransferasas/química , Proteínas Fúngicas/química , Glicósido Hidrolasas/química , Rhizomucor/enzimología , Acetiltransferasas/genética , Proteínas Fúngicas/genética , Glicósido Hidrolasas/genética , Estructura Terciaria de Proteína , Rhizomucor/genética
11.
FEMS Microbiol Rev ; 39(2): 171-83, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25725011

RESUMEN

Fungal cell walls play dynamic functions in interaction of fungi with their surroundings. In pathogenic fungi, the cell wall is the first structure to make physical contact with host cells. An important structural component of fungal cell walls is chitin, a well-known elicitor of immune responses in plants. Research into chitin perception has sparked since the chitin receptor from rice was cloned nearly a decade ago. Considering the widespread nature of chitin perception in plants, pathogens evidently evolved strategies to overcome detection, including alterations in the composition of cell walls, modification of their carbohydrate chains and secretion of effectors to provide cell wall protection or target host immune responses. Also non-pathogenic fungi contain chitin in their cell walls and are recipients of immune responses. Intriguingly, various mutualists employ chitin-derived signaling molecules to prepare their hosts for the mutualistic relationship. Research on the various types of interactions has revealed different molecular components that play crucial roles and, moreover, that various chitin-binding proteins contain dissimilar chitin-binding domains across species that differ in affinity and specificity. Considering the various strategies from microbes and hosts focused on chitin recognition, it is evident that this carbohydrate plays a central role in plant-fungus interactions.


Asunto(s)
Quitina/metabolismo , Hongos/metabolismo , Plantas/microbiología , Quitina/biosíntesis , Interacciones Huésped-Patógeno
12.
Antiviral Res ; 109: 72-82, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24992731

RESUMEN

The Middle-East Respiratory Syndrome coronavirus (MERS-CoV) causes severe acute pneumonia and renal failure. The MERS-CoV papain-like protease (PL(pro)) is a potential target for the development of antiviral drugs. To facilitate these efforts, we determined the three-dimensional structure of the enzyme by X-ray crystallography. The molecule consists of a ubiquitin-like domain and a catalytic core domain. The catalytic domain displays an extended right-hand fold with a zinc ribbon and embraces a solvent-exposed substrate-binding region. The overall structure of the MERS-CoV PL(pro) is similar to that of the corresponding SARS-CoV enzyme, but the architecture of the oxyanion hole and of the S3 as well as the S5 specificity sites differ from the latter. These differences are the likely reason for reduced in vitro peptide hydrolysis and deubiquitinating activities of the MERS-CoV PL(pro), compared to the homologous enzyme from the SARS coronavirus. Introduction of a side-chain capable of oxyanion stabilization through the Leu106Trp mutation greatly enhances the in vitro catalytic activity of the MERS-CoV PL(pro). The unique features observed in the crystal structure of the MERS-CoV PL(pro) should allow the design of antivirals that would not interfere with host ubiquitin-specific proteases.


Asunto(s)
Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Papaína/química , Proteínas Virales/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Modelos Moleculares , Datos de Secuencia Molecular , Papaína/antagonistas & inhibidores , Papaína/genética , Estructura Terciaria de Proteína , Alineación de Secuencia , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética
13.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 209-17, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24531456

RESUMEN

Haloalkane dehalogenases catalyze the hydrolytic cleavage of carbon-halogen bonds, which is a key step in the aerobic mineralization of many environmental pollutants. One important pollutant is the toxic and anthropogenic compound 1,2,3-trichloropropane (TCP). Rational design was combined with saturation mutagenesis to obtain the haloalkane dehalogenase variant DhaA31, which displays an increased catalytic activity towards TCP. Here, the 1.31 Šresolution crystal structure of substrate-free DhaA31, the 1.26 Šresolution structure of DhaA31 in complex with TCP and the 1.95 Šresolution structure of wild-type DhaA are reported. Crystals of the enzyme-substrate complex were successfully obtained by adding volatile TCP to the reservoir after crystallization at pH 6.5 and room temperature. Comparison of the substrate-free structure with that of the DhaA31 enzyme-substrate complex reveals that the nucleophilic Asp106 changes its conformation from an inactive to an active state during the catalytic cycle. The positions of three chloride ions found inside the active site of the enzyme indicate a possible pathway for halide release from the active site through the main tunnel. Comparison of the DhaA31 variant with wild-type DhaA revealed that the introduced substitutions reduce the volume and the solvent-accessibility of the active-site pocket.


Asunto(s)
Proteínas Bacterianas/química , Contaminantes Ambientales/química , Hidrolasas/química , Propano/análogos & derivados , Rhodococcus/química , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Dominio Catalítico , Cristalografía por Rayos X , Contaminantes Ambientales/metabolismo , Hidrolasas/metabolismo , Hidrólisis , Modelos Moleculares , Mutagénesis , Propano/química , Propano/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Rhodococcus/enzimología
14.
Elife ; 2: e00790, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23840930

RESUMEN

While host immune receptors detect pathogen-associated molecular patterns to activate immunity, pathogens attempt to deregulate host immunity through secreted effectors. Fungi employ LysM effectors to prevent recognition of cell wall-derived chitin by host immune receptors, although the mechanism to compete for chitin binding remained unclear. Structural analysis of the LysM effector Ecp6 of the fungal tomato pathogen Cladosporium fulvum reveals a novel mechanism for chitin binding, mediated by intrachain LysM dimerization, leading to a chitin-binding groove that is deeply buried in the effector protein. This composite binding site involves two of the three LysMs of Ecp6 and mediates chitin binding with ultra-high (pM) affinity. Intriguingly, the remaining singular LysM domain of Ecp6 binds chitin with low micromolar affinity but can nevertheless still perturb chitin-triggered immunity. Conceivably, the perturbation by this LysM domain is not established through chitin sequestration but possibly through interference with the host immune receptor complex. DOI:http://dx.doi.org/10.7554/eLife.00790.001.


Asunto(s)
Quitina/metabolismo , Cladosporium/fisiología , Proteínas Fúngicas/metabolismo , Receptores Inmunológicos/metabolismo , Secuencia de Aminoácidos , Cladosporium/inmunología , Dimerización , Proteínas Fúngicas/química , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido
15.
J Virol ; 87(8): 4339-51, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23388726

RESUMEN

We have determined the cleavage specificity and the crystal structure of the 3C protease of enterovirus 68 (EV68 3C(pro)). The protease exhibits a typical chymotrypsin fold with a Cys...His...Glu catalytic triad; its three-dimensional structure is closely related to that of the 3C(pro) of rhinovirus 2, as well as to that of poliovirus. The phylogenetic position of the EV68 3C(pro) between the corresponding enzymes of rhinoviruses on the one hand and classical enteroviruses on the other prompted us to use the crystal structure for the design of irreversible inhibitors, with the goal of discovering broad-spectrum antiviral compounds. We synthesized a series of peptidic α,ß-unsaturated ethyl esters of increasing length and for each inhibitor candidate, we determined a crystal structure of its complex with the EV68 3C(pro), which served as the basis for the next design round. To exhibit inhibitory activity, compounds must span at least P3 to P1'; the most potent inhibitors comprise P4 to P1'. Inhibitory activities were found against the purified 3C protease of EV68, as well as with replicons for poliovirus and EV71 (50% effective concentration [EC(50)] = 0.5 µM for the best compound). Antiviral activities were determined using cell cultures infected with EV71, poliovirus, echovirus 11, and various rhinovirus serotypes. The most potent inhibitor, SG85, exhibited activity with EC(50)s of ≈180 nM against EV71 and ≈60 nM against human rhinovirus 14 in a live virus-cell-based assay. Even the shorter SG75, spanning only P3 to P1', displayed significant activity (EC(50) = 2 to 5 µM) against various rhinoviruses.


Asunto(s)
Antivirales/farmacología , Drogas de Diseño/farmacología , Picornaviridae/efectos de los fármacos , Picornaviridae/enzimología , Inhibidores de Proteasas/farmacología , Proteínas Virales/antagonistas & inhibidores , Proteasas Virales 3C , Antivirales/química , Línea Celular , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Drogas de Diseño/química , Diseño de Fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Inhibidores de Proteasas/química , Conformación Proteica , Proteínas Virales/química
16.
J Neurosci ; 32(28): 9727-35, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22787058

RESUMEN

Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation.


Asunto(s)
Astrocitos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Óxido Nítrico/farmacología , Análisis de Varianza , Animales , Animales Recién Nacidos , Astrocitos/fisiología , Células Cultivadas , Corteza Cerebral/citología , Cromonas/farmacología , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Lactasa/metabolismo , Ratones , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Morfolinas/farmacología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Compuestos Nitrosos/farmacología , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección
17.
Proc Natl Acad Sci U S A ; 109(16): 6253-8, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22474366

RESUMEN

WaaA is a key enzyme in the biosynthesis of LPS, a critical component of the outer envelope of Gram-negative bacteria. Embedded in the cytoplasmic face of the inner membrane, WaaA catalyzes the transfer of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) to the lipid A precursor of LPS. Here we present crystal structures of the free and CMP-bound forms of WaaA from Aquifex aeolicus, an ancient Gram-negative hyperthermophile. These structures reveal details of the CMP-binding site and implicate a unique sequence motif (GGS/TX(5)GXNXLE) in Kdo binding. In addition, a cluster of highly conserved amino acid residues was identified which represents the potential membrane-attachment and acceptor-substrate binding site of WaaA. A series of site-directed mutagenesis experiments revealed critical roles for glycine 30 and glutamate 31 in Kdo transfer. Our results provide the structural basis of a critical reaction in LPS biosynthesis and allowed the development of a detailed model of the catalytic mechanism of WaaA.


Asunto(s)
Proteínas Bacterianas/química , Glicosiltransferasas/química , Lipopolisacáridos/biosíntesis , Proteínas de la Membrana/química , Transferasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Biocatálisis , Cristalografía por Rayos X , Ácido Glutámico/química , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Glicina/química , Glicina/genética , Glicina/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Bacterias Gramnegativas/enzimología , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Lípido A/biosíntesis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia , Transferasas/genética , Transferasas/metabolismo
18.
PLoS One ; 6(8): e23231, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21826242

RESUMEN

Lipopolysaccharide (LPS) is located on the surface of Gram-negative bacteria and is responsible for maintaining outer membrane stability, which is a prerequisite for cell survival. Furthermore, it represents an important barrier against hostile environmental factors such as antimicrobial peptides and the complement cascade during Gram-negative infections. The sugar 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) is an integral part of LPS and plays a key role in LPS functionality. Prior to its incorporation into the LPS molecule, Kdo has to be activated by the CMP-Kdo synthetase (CKS). Based on the presence of a single Mg²âº ion in the active site, detailed models of the reaction mechanism of CKS have been developed previously. Recently, a two-metal-ion hypothesis suggested the involvement of two Mg²âº ions in Kdo activation. To further investigate the mechanistic aspects of Kdo activation, we kinetically characterized the CKS from the hyperthermophilic organism Aquifex aeolicus. In addition, we determined the crystal structure of this enzyme at a resolution of 2.10 Å and provide evidence that two Mg²âº ions are part of the active site of the enzyme.


Asunto(s)
Lipopolisacáridos/metabolismo , Magnesio/metabolismo , Nucleotidiltransferasas/metabolismo , Citidina Trifosfato/metabolismo , Cinética , Estructura Molecular
19.
Biochem Biophys Res Commun ; 408(4): 680-5, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21539810

RESUMEN

In eukaryotes, the poly(A)-binding protein (PABP) is one of the important factors for initiation of messenger RNA translation. PABP activity is regulated by the PABP-interacting proteins (Paips), which include Paip1, Paip2A, and Paip2B. Human Paip1 has three different isoforms. Here, we report the crystal structure of the middle domain of Paip1 isoform 2 (Paip1M) as determined by single-wavelength anomalous dispersion phasing. The structure reveals a crescent-shaped domain consisting of 10 α-helices and two antiparallel ß-strands forming a ß-hairpin. The 10 α-helices are arranged as five HEAT repeats which form a double layer of α helices with a convex and a concave surface. Despite low sequence identity, the overall fold of Paip1M is similar to the middle domain of human eIF4GII and yeast eIF4GI. Moreover, the amino-acid sequence motif and the local structure of eIF4G involved in binding of eIF4A, are conserved in Paip1. The structure reported here is the first of a member of the Paip family, thereby filling a gap in our understanding of initiation of eukaryotic mRNA translation in three dimensions.


Asunto(s)
Factores de Iniciación de Péptidos/química , Proteínas de Unión al ARN/química , Secuencia de Aminoácidos , Cristalografía , Factor 4G Eucariótico de Iniciación/química , Humanos , Datos de Secuencia Molecular , Factores de Iniciación de Péptidos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/química
20.
Biochim Biophys Acta ; 1794(9): 1288-98, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19665595

RESUMEN

Two previously reported holoprotein crystal forms of the flavodoxin-like E. coli protein WrbA, diffracting to 2.6 and 2.0 A resolution, and new crystals of WrbA apoprotein diffracting to 1.85 A, are refined and analysed comparatively through the lens of flavodoxin structures. The results indicate that differences between apo- and holoWrbA crystal structures are manifested on many levels of protein organization as well as in the FMN-binding sites. Evaluation of the influence of crystal contacts by comparison of lattice packing reveals the protein's global response to FMN binding. Structural changes upon cofactor binding are compared with the monomeric flavodoxins. Topologically non-equivalent residues undergo remarkably similar local structural changes upon FMN binding to WrbA or to flavodoxin, despite differences in multimeric organization and residue types at the binding sites. Analysis of the three crystal structures described here, together with flavodoxin structures, rationalizes functional similarities and differences of the WrbAs relative to flavodoxins, leading to a new understanding of the defining features of WrbAs. The results suggest that WrbAs are not a remote and unusual branch of the flavodoxin family as previously thought but rather a central member with unifying structural features.


Asunto(s)
Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Anabaena/química , Apoproteínas/química , Apoproteínas/metabolismo , Sitios de Unión , Mononucleótido de Flavina/química , Mononucleótido de Flavina/metabolismo , Flavodoxina/química , Flavodoxina/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA