Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecology ; 97(3): 671-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27197394

RESUMEN

Given the strong coupling between the carbon (C) and nitrogen (N) cycles, there is substantial interest in understanding how N availability affects C cycling in terrestrial ecosystems, especially in ecosystems limited by N. However, most studies in temperate and boreal forests have focused on the effects of N addition on tree growth. By comparison, less is known about the effects of N availability on the cycling of C in understory vegetation despite some evidence that dwarf shrubs, mosses, and lichens play an important role in the forest C balance. In this study, we used an in situ 13CO2 pulse-labeling technique to examine the short-term dynamics of C partitioning in understory vegetation in three boreal Pinus sylvestris forest stands exposed to different rates of N addition: a low and high N addition that receive annual additions of NH4NO3 of 20 and 100 kg N/ha, respectively, and this is a typo. It should be an unfertilized control. Labeling was conducted at two distinct periods (early vs. late growing season), which provided a seasonal picture of how N addition affects C dynamics in understory vegetation. In contrast to what has been found in trees, there was no obvious trend in belowground C partitioning in ericaceous plants in response to N additions or seasonality. Increasing N addition led to a greater percentage of 13C being incorporated into ericaceous leaves with a high turnover, whereas high rates of N addition strongly reduced the incorporation of 13C into less degradable moss tissues. Addition of N also resulted in a greater percentage of the 13C label being respired back to the atmosphere and an overall reduction in total understory carbon use efficiency. Taken together, our results suggest a faster cycling of C in understory vegetation with increasing N additions; yet the magnitude of this general response was strongly dependent on the amount of N added and varied seasonally. These results provide some of the first in situ C and N partitioning estimates for plants growing under the complex web of resource limitations in the boreal understory.


Asunto(s)
Carbono/metabolismo , Nitrógeno/metabolismo , Plantas/metabolismo , Estaciones del Año , Biomasa , Isótopos de Carbono , Bosques , Nitrógeno/química , Desarrollo de la Planta , Plantas/clasificación
2.
Nature ; 528(7580): 119-22, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26595275

RESUMEN

Drought threatens tropical rainforests over seasonal to decadal timescales, but the drivers of tree mortality following drought remain poorly understood. It has been suggested that reduced availability of non-structural carbohydrates (NSC) critically increases mortality risk through insufficient carbon supply to metabolism ('carbon starvation'). However, little is known about how NSC stores are affected by drought, especially over the long term, and whether they are more important than hydraulic processes in determining drought-induced mortality. Using data from the world's longest-running experimental drought study in tropical rainforest (in the Brazilian Amazon), we test whether carbon starvation or deterioration of the water-conducting pathways from soil to leaf trigger tree mortality. Biomass loss from mortality in the experimentally droughted forest increased substantially after >10 years of reduced soil moisture availability. The mortality signal was dominated by the death of large trees, which were at a much greater risk of hydraulic deterioration than smaller trees. However, we find no evidence that the droughted trees suffered carbon starvation, as their NSC concentrations were similar to those of non-droughted trees, and growth rates did not decline in either living or dying trees. Our results indicate that hydraulics, rather than carbon starvation, triggers tree death from drought in tropical rainforest.


Asunto(s)
Carbono/metabolismo , Sequías , Bosque Lluvioso , Árboles/metabolismo , Clima Tropical , Agua/metabolismo , Biomasa , Tamaño Corporal , Brasil , Metabolismo de los Hidratos de Carbono , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo , Estaciones del Año , Suelo/química , Árboles/crecimiento & desarrollo , Xilema/metabolismo
3.
Nature ; 519(7541): 78-82, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25739631

RESUMEN

In 2005 and 2010 the Amazon basin experienced two strong droughts, driven by shifts in the tropical hydrological regime possibly associated with global climate change, as predicted by some global models. Tree mortality increased after the 2005 drought, and regional atmospheric inversion modelling showed basin-wide decreases in CO2 uptake in 2010 compared with 2011 (ref. 5). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ. Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23-0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the absence of growth. We propose that weakened maintenance and defence investment may, in turn, cause the increase in post-drought tree mortality observed at our plots.


Asunto(s)
Carbono/metabolismo , Sequías , Bosques , Clima Tropical , Brasil , Dióxido de Carbono/metabolismo , Respiración de la Célula , Fotosíntesis , Árboles/citología , Árboles/metabolismo
4.
New Phytol ; 187(3): 608-21, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20553394

RESUMEN

*The effects of drought on the Amazon rainforest are potentially large but remain poorly understood. Here, carbon (C) cycling after 5 yr of a large-scale through-fall exclusion (TFE) experiment excluding about 50% of incident rainfall from an eastern Amazon rainforest was compared with a nearby control plot. *Principal C stocks and fluxes were intensively measured in 2005. Additional minor components were either quantified in later site measurements or derived from the available literature. *Total ecosystem respiration (R(eco)) and total plant C expenditure (PCE, the sum of net primary productivity (NPP) and autotrophic respiration (R(auto))), were elevated on the TFE plot relative to the control. The increase in PCE and R(eco) was mainly caused by a rise in R(auto) from foliage and roots. Heterotrophic respiration did not differ substantially between plots. NPP was 2.4 +/- 1.4 t C ha(-1) yr(-1) lower on the TFE than the control. Ecosystem carbon use efficiency, the proportion of PCE invested in NPP, was lower in the TFE plot (0.24 +/- 0.04) than in the control (0.32 +/- 0.04). *Drought caused by the TFE treatment appeared to drive fundamental shifts in ecosystem C cycling with potentially important consequences for long-term forest C storage.


Asunto(s)
Carbono/metabolismo , Sequías , Árboles/metabolismo , Bacterias/metabolismo , Brasil , Dióxido de Carbono/metabolismo , Respiración de la Célula , Ecosistema , Suelo , Factores de Tiempo
5.
J Anim Sci ; 88(13 Suppl): E216-22, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19854998

RESUMEN

Perinatal insults, including fetal undernutrition and hypoxia, are associated with an increased susceptibility to several adult-onset metabolic disorders. These include cardiovascular disease, insulin resistance, and obesity. However, the mechanisms driving the long-term phenotypic consequences have only recently begun to be elucidated. A primary mechanism accounting for perinatal adaptation is the epigenetic modification of chromatin. In this context, epigenetic modifications to chromatin are thought to arise in response to a perinatal insult in an effort to modulate gene expression and maximize fetal survival. In this symposium report, we discuss epigenetics as a mechanism by which perinatal adaptations can be made by the developing fetus. We examine the benefits of using multiple in vivo models to understand the interrelation of signals that come together and result in perinatal adaptation. Epigenetic effects on IGF-1 arising from a perinatal insult are discussed, as are the difficulties and challenges associated with this complex field. In conclusion, epigenetics provides a means of modulating gene transcription, thus allowing fetal adaptation to a broad variety of conditions.


Asunto(s)
Adaptación Fisiológica/fisiología , Epigénesis Genética/fisiología , Feto/fisiología , Animales , Animales Domésticos/fisiología , Femenino , Desarrollo Fetal/genética , Desarrollo Fetal/fisiología , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/fisiología , Embarazo
6.
Philos Trans R Soc Lond B Biol Sci ; 363(1498): 1849-55, 2008 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-18267913

RESUMEN

Interannual variations in CO2 exchange across Amazonia, as deduced from atmospheric inversions, correlate with El Niño occurrence. They are thought to result from changes in net ecosystem exchange and fire incidence that are both related to drought intensity. Alterations to net ecosystem production (NEP) are caused by changes in gross primary production (GPP) and ecosystem respiration (Reco). Here, we analyse observations of the components of Reco (leaves, live and dead woody tissue, and soil) to provide first estimates of changes in Reco during short-term (seasonal to interannual) moisture limitation. Although photosynthesis declines if moisture availability is limiting, leaf dark respiration is generally maintained, potentially acclimating upwards in the longer term. If leaf area is lost, then short-term canopy-scale respiratory effluxes from wood and leaves are likely to decline. Using a moderate short-term drying scenario where soil moisture limitation leads to a loss of 0.5m2m-2yr-1 in leaf area index, we estimate a reduction in respiratory CO2 efflux from leaves and live woody tissue of 1.0 (+/-0.4) tCha-1yr-1. Necromass decomposition declines during drought, but mortality increases; the median mortality increase following a strong El Niño is 1.1% (n=46 tropical rainforest plots) and yields an estimated net short-term increase in necromass CO2 efflux of 0.13-0.18tCha-1yr-1. Soil respiration is strongly sensitive to moisture limitation over the short term, but not to associated temperature increases. This effect is underestimated in many models but can lead to estimated reductions in CO2 efflux of 2.0 (+/-0.5) tCha-1yr-1. Thus, the majority of short-term respiratory responses to drought point to a decline in Reco, an outcome that contradicts recent regional-scale modelling of NEP. NEP varies with both GPP and Reco but robust moisture response functions are clearly needed to improve quantification of the role of Reco in influencing regional-scale CO2 emissions from Amazonia.


Asunto(s)
Carbono/metabolismo , Desastres , Árboles/fisiología , Clima Tropical , Carbono/química , Ecosistema , Consumo de Oxígeno , Hojas de la Planta/fisiología , Transpiración de Plantas , Suelo
7.
New Phytol ; 177(1): 220-228, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17944822

RESUMEN

Half of the biological activity in forest soils is supported by recent tree photosynthate, but no study has traced in detail this flux of carbon from the canopy to soil microorganisms in the field. Using (13)CO(2), we pulse-labelled over 1.5 h a 50-m(2) patch of 4-m-tall boreal Pinus sylvestris forest in a 200-m(3) chamber. Tracer levels peaked after 24 h in soluble carbohydrates in the phloem at a height of 0.3 m, after 2-4 d in soil respiratory efflux, after 4-7 d in ectomycorrhizal roots, and after 2-4 d in soil microbial cytoplasm. Carbon in the active pool in needles, in soluble carbohydrates in phloem and in soil respiratory efflux had half-lives of 22, 17 and 35 h, respectively. Carbon in soil microbial cytoplasm had a half-life of 280 h, while the carbon in ectomycorrhizal root tips turned over much more slowly. Simultaneous labelling of the soil with (15)NH(+)(4) showed that the ectomycorrhizal roots, which were the strongest sinks for photosynthate, were also the most active sinks for soil nitrogen. These observations highlight the close temporal coupling between tree canopy photosynthesis and a significant fraction of soil activity in forests.


Asunto(s)
Carbono/metabolismo , Suelo/análisis , Árboles/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Ecosistema , Nitrógeno/metabolismo , Isótopos de Nitrógeno , Pinus sylvestris/metabolismo , Microbiología del Suelo , Factores de Tiempo
8.
New Phytol ; 174(3): 697-703, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17447923

RESUMEN

This study evaluates a novel method for extracting roots from soil samples and applies it to estimate standing crop root mass (+/- confidence intervals) in an eastern Amazon rainforest. Roots were manually extracted from soil cores over a period of 40 min, which was split into 10 min time intervals. The pattern of cumulative extraction over time was used to predict root extraction beyond 40 min. A maximum-likelihood approach was used to calculate confidence intervals. The temporal prediction method added 21-32% to initial estimates of standing crop root mass. According to predictions, complete manual root extraction from 18 samples would have taken c. 239 h, compared with 12 h using the prediction method. Uncertainties (percentage difference between mean, and 10th and 90th percentiles) introduced by the prediction method were small (12-15%), compared with uncertainties caused by spatial variation in root mass (72-191%, for nine samples per plot surveyed). This method provides a way of increasing the number of root samples processed per unit time, without compromising measurement accuracy.


Asunto(s)
Raíces de Plantas/metabolismo , Plantas/metabolismo , Suelo , Manejo de Especímenes/métodos , Funciones de Verosimilitud , Proyectos de Investigación , América del Sur , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...