Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 30(8): 1385-1397, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31239387

RESUMEN

BACKGROUND: Evidence suggests that antimicrobial peptides, components of the innate immune response, protect the kidneys and bladder from bacterial challenge. We previously identified ribonuclease 7 (RNase 7) as a human antimicrobial peptide that has bactericidal activity against uropathogenic Escherichia coli (UPEC). Functional studies assessing RNase 7's contributions to urinary tract defense are limited. METHODS: To investigate RNase 7's role in preventing urinary tract infection (UTI), we quantified urinary RNase 7 concentrations in 29 girls and adolescents with a UTI history and 29 healthy female human controls. To assess RNase 7's antimicrobial activity in vitro in human urothelial cells, we used siRNA to silence urothelial RNase 7 production and retroviral constructs to stably overexpress RNase 7; we then evaluated UPEC's ability to bind and invade these cells. For RNase 7 in vivo studies, we developed humanized RNase 7 transgenic mice, subjected them to experimental UTI, and enumerated UPEC burden in the urine, bladder, and kidneys. RESULTS: Compared with controls, study participants with a UTI history had 1.5-fold lower urinary RNase 7 concentrations. When RNase 7 was silenced in vitro, the percentage of UPEC binding or invading human urothelial cells increased; when cells overexpressed RNase 7, UPEC attachment and invasion decreased. In the transgenic mice, we detected RNase 7 expression in the kidney's intercalated cells and bladder urothelium. RNase 7 humanized mice exhibited marked protection from UPEC. CONCLUSIONS: These findings provide evidence that RNase 7 has a role in kidney and bladder host defense against UPEC and establish a foundation for investigating RNase 7 as a UTI prognostic marker or nonantibiotic-based therapy.


Asunto(s)
Infecciones por Escherichia coli/enzimología , Riñón/enzimología , Ribonucleasas/genética , Vejiga Urinaria/enzimología , Infecciones Urinarias/enzimología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena , Adolescente , Animales , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/genética , Niño , Preescolar , Femenino , Silenciador del Gen , Humanos , Inmunidad Innata , Lactante , Riñón/microbiología , Masculino , Ratones , Ratones Transgénicos , Fenotipo , Pronóstico , Vejiga Urinaria/microbiología , Urotelio/metabolismo , Urotelio/patología , Adulto Joven
2.
J Clin Invest ; 128(12): 5634-5646, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30418175

RESUMEN

People with diabetes mellitus have increased infection risk. With diabetes, urinary tract infection (UTI) is more common and has worse outcomes. Here, we investigate how diabetes and insulin resistance impact the kidney's innate defenses and urine sterility. We report that type 2 diabetic mice have increased UTI risk. Moreover, insulin-resistant prediabetic mice have increased UTI susceptibility, independent of hyperglycemia or glucosuria. To identify how insulin resistance affects renal antimicrobial defenses, we genetically deleted the insulin receptor in the kidney's collecting tubules and intercalated cells. Intercalated cells, located within collecting tubules, contribute to epithelial defenses by acidifying the urine and secreting antimicrobial peptides (AMPs) into the urinary stream. Collecting duct and intercalated cell-specific insulin receptor deletion did not impact urine acidification, suppressed downstream insulin-mediated targets and AMP expression, and increased UTI susceptibility. Specifically, insulin receptor-mediated signaling regulates AMPs, including lipocalin 2 and ribonuclease 4, via phosphatidylinositol-3-kinase signaling. These data suggest that insulin signaling plays a critical role in renal antibacterial defenses.


Asunto(s)
Infecciones Bacterianas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Túbulos Renales Colectores/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal , Infecciones Urinarias/metabolismo , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/patología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/microbiología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/patología , Túbulos Renales Colectores/microbiología , Túbulos Renales Colectores/patología , Ratones , Ratones Mutantes , Receptor de Insulina/genética , Infecciones Urinarias/genética , Infecciones Urinarias/patología , alfa-Defensinas/genética , alfa-Defensinas/metabolismo
3.
Kidney Int ; 90(3): 568-79, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27401534

RESUMEN

Diabetes mellitus is a systemic disease associated with a deficiency of insulin production or action. Diabetic patients have an increased susceptibility to infection with the urinary tract being the most common site. Recent studies suggest that Ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that plays an important role in protecting the urinary tract from bacterial insult. Because the impact of diabetes on RNase 7 expression and function are unknown, we investigated the effects of insulin on RNase 7 using human urine specimens. The urinary RNase 7 concentrations were measured in healthy control patients and insulin-deficient type 1 diabetics before and after starting insulin therapy. Compared with controls, diabetic patients had suppressed urinary RNase 7 concentrations, which increased with insulin. Using primary human urothelial cells, the mechanisms by which insulin stimulates RNase 7 synthesis were next explored. Insulin induced RNase 7 production via the phosphatidylinositide 3-kinase signaling pathway (PI3K/AKT) to shield urothelial cells from uropathogenic E. coli. In contrast, uropathogenic E. coli suppressed PI3K/AKT activity and RNase 7 production. Thus, insulin and PI3K/AKT signaling are essential for RNase 7 expression and increased infection risks in diabetic patients may be secondary to suppressed RNase 7 production. Our data may provide unique insight into novel urinary tract infection therapeutic strategies in at-risk populations.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Infecciones por Escherichia coli/metabolismo , Insulina/metabolismo , Ribonucleasas/metabolismo , Infecciones Urinarias/metabolismo , Sistema Urinario/metabolismo , Adolescente , Antígenos CD/metabolismo , Línea Celular Tumoral , Niño , Preescolar , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/orina , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/etiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/orina , Femenino , Humanos , Insulina/uso terapéutico , Masculino , Persona de Mediana Edad , Fosfatidilinositol 3-Quinasas/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Ribonucleasas/orina , Transducción de Señal , Sistema Urinario/microbiología , Infecciones Urinarias/etiología , Infecciones Urinarias/microbiología , Infecciones Urinarias/orina
4.
J Comp Neurol ; 524(9): 1859-75, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26560074

RESUMEN

The release of neuromodulators by widely projecting neurons often allows sensory systems to alter how they process information based on the physiological state of an animal. Neuromodulators alter network function by changing the biophysical properties of individual neurons and the synaptic efficacy with which individual neurons communicate. However, most, if not all, sensory networks receive multiple neuromodulatory inputs, and the mechanisms by which sensory networks integrate multiple modulatory inputs are not well understood. Here we characterized the relative glomerular distribution of two extrinsic neuromodulators associated with distinct physiological states, serotonin (5-HT) and dopamine (DA), in the antennal lobe (AL) of the moth Manduca sexta. By using immunocytochemistry and mass dye fills, we characterized the innervation patterns of both 5-HT- and tyrosine hydroxylase-immunoreactive processes relative to each other, to olfactory receptor neurons (ORNs), to projection neurons (PNs), and to several subsets of local interneurons (LNs). 5-HT immunoreactivity had nearly complete overlap with PNs and LNs, yet no overlap with ORNs, suggesting that 5-HT may modulate PNs and LNs directly but not ORNs. TH immunoreactivity overlapped with PNs, LNs, and ORNs, suggesting that dopamine has the potential to modulate all three cell types. Furthermore, the branching density of each neuromodulator differed, with 5-HT exhibiting denser arborizations and TH-ir processes being sparser. Our results suggest that 5-HT and DA extrinsic neurons target partially overlapping glomerular regions, yet DA extends further into the region occupied by ORNs.


Asunto(s)
Antenas de Artrópodos/anatomía & histología , Manduca/anatomía & histología , Red Nerviosa/fisiología , Neurotransmisores/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Animales , Dextranos/metabolismo , Dopamina/metabolismo , Proteínas de Drosophila/metabolismo , Hormonas de Insectos/metabolismo , Neuropéptidos/metabolismo , Serotonina/metabolismo , Taquicininas
5.
PLoS One ; 8(3): e59826, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23527273

RESUMEN

Stalk-eyed flies (family Diopsidae) are a model system for studying sexual selection due to the elongated and sexually dimorphic eye-stalks found in many species. These flies are of additional interest because their X chromosome is derived largely from an autosomal arm in other flies. To identify candidate genes required for development of dimorphic eyestalks and investigate how sex-biased expression arose on the novel X, we compared gene expression between males and females using oligonucleotide microarrays and RNA from developing eyestalk tissue or adult heads in the dimorphic diopsid, Teleopsis dalmanni. Microarray analysis revealed sex-biased expression for 26% of 3,748 genes expressed in eye-antennal imaginal discs and concordant sex-biased expression for 86 genes in adult heads. Overall, 415 female-biased and 482 male-biased genes were associated with dimorphic eyestalk development but not differential expression in the adult head. Functional analysis revealed that male-biased genes are disproportionately associated with growth and mitochondrial function while female-biased genes are associated with cell differentiation and patterning or are novel transcripts. With regard to chromosomal effects, dosage compensation occurs by elevated expression of X-linked genes in males. Genes with female-biased expression were more common on the X and less common on autosomes than expected, while male-biased genes exhibited no chromosomal pattern. Rates of protein evolution were lower for female-biased genes but higher for genes that moved on or off the novel X chromosome. These findings cannot be due to meiotic sex chromosome inactivation or by constraints associated with dosage compensation. Instead, they could be consistent with sexual conflict in which female-biased genes on the novel X act primarily to reduce eyespan in females while other genes increase eyespan in both sexes. Additional information on sex-biased gene expression in other tissues and related sexually monomorphic species could confirm this interpretation.


Asunto(s)
Dípteros/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica/fisiología , Cabeza/crecimiento & desarrollo , Caracteres Sexuales , Cromosoma X/genética , Análisis de Varianza , Animales , Cartilla de ADN/genética , Dípteros/genética , Dípteros/crecimiento & desarrollo , Compensación de Dosificación (Genética)/genética , Femenino , Estudios de Asociación Genética , Discos Imaginales/metabolismo , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos
6.
Proc Biol Sci ; 275(1648): 2265-72, 2008 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-18559322

RESUMEN

Group fission is an important dispersal mechanism for philopatric adults. In Cypress Hills Interprovincial Park, Saskatchewan, tree-roosting big brown bats (Eptesicus fuscus) exhibit fission-fusion roosting behaviour. During 2004-2007, the majority of females previously resident to roosting area 1 (RA1) moved to a new roosting area (RA4). We examined how genetic relationships, inferred from data for microsatellite loci and mitochondrial DNA, influenced new roost area (RA) selection during 2006 when colony members were split between the RAs. We found that females who moved to RA4 had higher average relatedness than those that remained in RA1. We found that nearly all females belonging to matrilines with high average relatedness moved to RA4 while females from matrilines with low average relatedness were split between the two RAs. These results suggest that closely related maternal kin preferentially move to new RAs. However, daily roosting preferences within a RA are not based on genetic relationships probably because daily roosting associations between kin and non-kin are used to ensure adequate roost group size. Studying the effects of kinship on the fission and movements of groups not only enhances our understanding of social behaviour and population genetics but also informs conservation decisions.


Asunto(s)
Migración Animal/fisiología , Quirópteros/crecimiento & desarrollo , Quirópteros/genética , Animales , Conducta Animal/fisiología , Simulación por Computador , ADN Mitocondrial/química , ADN Mitocondrial/genética , Femenino , Variación Genética , Haplotipos , Masculino , Repeticiones de Microsatélite , Reacción en Cadena de la Polimerasa , Conducta Social
7.
Front Zool ; 3: 3, 2006 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-16507093

RESUMEN

BACKGROUND: There has been considerable research on rodent ultrasound in the laboratory and these sounds have been well quantified and characterized. Despite the value of research on ultrasound produced by mice in the lab, it is unclear if, and when, these sounds are produced in the wild, and how they function in natural habitats. RESULTS: We have made the first recordings of ultrasonic vocalizations produced by two free-living species of mice in the genus Peromyscus (P. californicus and P. boylii) on long term study grids in California. Over 6 nights, we recorded 65 unique ultrasonic vocalization phrases from Peromyscus. The ultrasonic vocalizations we recorded represent 7 different motifs. Within each motif, there was considerable variation in the acoustic characteristics suggesting individual and contextual variation in the production of ultrasound by these species. CONCLUSION: The discovery of the production of ultrasonic vocalizations by Peromyscus in the wild highlights an underappreciated component in the behavior of these model organisms. The ability to examine the production of ultrasonic vocalizations in the wild offers excellent opportunities to test hypotheses regarding the function of ultrasound produced by rodents in a natural context.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA