Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mar Sci ; 62019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31534948

RESUMEN

There is a growing need for operational oceanographic predictions in both the Arctic and Antarctic polar regions. In the former, this is driven by a declining ice cover accompanied by an increase in maritime traffic and exploitation of marine resources. Oceanographic predictions in the Antarctic are also important, both to support Antarctic operations and also to help elucidate processes governing sea ice and ice shelf stability. However, a significant gap exists in the ocean observing system in polar regions, compared to most areas of the global ocean, hindering the reliability of ocean and sea ice forecasts. This gap can also be seen from the spread in ocean and sea ice reanalyses for polar regions which provide an estimate of their uncertainty. The reduced reliability of polar predictions may affect the quality of various applications including search and rescue, coupling with numerical weather and seasonal predictions, historical reconstructions (reanalysis), aquaculture and environmental management including environmental emergency response. Here, we outline the status of existing near-real time ocean observational efforts in polar regions, discuss gaps, and explore perspectives for the future. Specific recommendations include a renewed call for open access to data, especially real-time data, as a critical capability for improved sea ice and weather forecasting and other environmental prediction needs. Dedicated efforts are also needed to make use of additional observations made as part of the Year of Polar Prediction (YOPP; 2017-2019) to inform optimal observing system design. To provide a polar extension to the Argo network, it is recommended that a network of ice-borne sea ice and upper-ocean observing buoys be deployed and supported operationally in ice-covered areas together with autonomous profiling floats and gliders (potentially with ice detection capability) in seasonally ice covered seas. Finally, additional efforts to better measure and parameterize surface exchanges in polar regions are much needed to improve coupled environmental prediction.

2.
Sci Rep ; 9(1): 2152, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770858

RESUMEN

Atmospheric rivers (ARs) cause heavy precipitation and flooding in the coastal areas of many mid-latitude continents, and thus the atmospheric processes associated with the AR have been intensively studied in recent years. However, AR-associated ocean variability and air-sea fluxes have received little attention because of the lack of high-resolution ocean data until recently. Here we demonstrate that typical ARs can generate strong upper ocean response and substantial air-sea fluxes using a high-resolution (1/12°) ocean reanalysis. AR events observed during the CalWater 2015 field campaign generate large-scale on-shore currents that hit the coast, generating strong narrow northward jets along the west coast of North America, in association with a substantial rise of sea level at the coast. In the open ocean, the AR generates prominent changes of mixed layer depth, especially south of 30°N due to the strong surface winds and air-sea heat fluxes. The prominent cooling of SST is observed only in the vicinity of AR upstream areas primarily due to the large latent heat flux. Using a long-term AR dataset, composite structure and variations of upper ocean and air-sea fluxes are presented, which are consistent with those found in the events during CalWater 2015.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...