Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(7): e1011909, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976719

RESUMEN

Viruses are obligate intracellular parasites that rely on host cell metabolism for successful replication. Thus, viruses rewire host cell pathways involved in central carbon metabolism to increase the availability of building blocks for successful propagation. However, the underlying mechanisms of virus-induced alterations to host metabolism are largely unknown. Noroviruses (NoVs) are highly prevalent pathogens that cause sporadic and epidemic viral gastroenteritis. In the present study, we uncovered several strain-specific and shared host cell metabolic requirements of three murine norovirus (MNV) strains, MNV-1, CR3, and CR6. While all three strains required glycolysis, glutaminolysis, and the pentose phosphate pathway for optimal infection of macrophages, only MNV-1 relied on host oxidative phosphorylation. Furthermore, the first metabolic flux analysis of NoV-infected cells revealed that both glycolysis and glutaminolysis are upregulated during MNV-1 infection of macrophages. Glutamine deprivation affected the viral lifecycle at the stage of genome replication, resulting in decreased non-structural and structural protein synthesis, viral assembly, and egress. Mechanistic studies further showed that MNV infection and overexpression of the non-structural protein NS1/2 increased the enzymatic activity of the rate-limiting enzyme glutaminase. In conclusion, the inaugural investigation of NoV-induced alterations to host glutaminolysis identified NS1/2 as the first viral molecule for RNA viruses that regulates glutaminolysis either directly or indirectly. This increases our fundamental understanding of virus-induced metabolic alterations and may lead to improvements in the cultivation of human NoVs.


Asunto(s)
Infecciones por Caliciviridae , Glutamina , Norovirus , Proteínas no Estructurales Virales , Replicación Viral , Norovirus/fisiología , Replicación Viral/fisiología , Ratones , Animales , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Glutamina/metabolismo , Infecciones por Caliciviridae/virología , Infecciones por Caliciviridae/metabolismo , Macrófagos/virología , Macrófagos/metabolismo , Humanos , Glutaminasa/metabolismo , Glucólisis/fisiología , Células RAW 264.7
2.
Artículo en Inglés | MEDLINE | ID: mdl-38277883

RESUMEN

Breastfeeding is an important determinant of infant health and there is immense interest in understanding its metabolite composition so that key beneficial components can be identified. The aim of this research was to measure the fatty acid composition of human milk in an Irish cohort where we examined changes depending on lactation stage and gestational weight gain trajectory. Utilizing a chromatography approach optimal for isomer separation, we identified 44 individual fatty acid species via GCMS and showed that monomethyl branched-chain fatty acids(mmBCFA's), C15:0 and C16:1 are lower in women with excess gestational weight gain versus low gestational weight gain. To further explore the potential contribution of the activity of endogenous metabolic pathways to levels of these fatty acids in milk, we administered D2O to C57BL/6J dams fed a purified lard based high fat diet (HFD) or low-fat diet during gestation and quantified the total and de novo synthesized levels of fatty acids in their milk. We found that de novo synthesis over three days can account for between 10 and 50 % of mmBCFAs in milk from dams on the low-fat diet dependent on the branched-chain fatty acid species. However, HFD fed mice had significantly decreased de novo synthesized fatty acids in milk resulting in lower total mmBCFAs and medium chain fatty acid levels. Overall, our findings highlight the diverse fatty acid composition of human milk and that human milk mmBCFA levels differ between gestational weight gain phenotypes. In addition, our data indicates that de novo synthesis contributes to mmBCFA levels in mice milk and thus may also be a contributory factor to mmBCFA levels in human milk. Given emerging data indicating mmBCFAs may be beneficial components of milk, this study contributes to our knowledge around the phenotypic factors that may impact their levels.


Asunto(s)
Ácidos Grasos , Ganancia de Peso Gestacional , Leche Humana , Humanos , Leche Humana/química , Leche Humana/metabolismo , Femenino , Animales , Ácidos Grasos/metabolismo , Ácidos Grasos/análisis , Ratones , Embarazo , Ratones Endogámicos C57BL , Adulto , Lactancia/metabolismo
3.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187600

RESUMEN

Viruses are obligate intracellular parasites that rely on host cell metabolism for successful replication. Thus, viruses rewire host cell pathways involved in central carbon metabolism to increase the availability of building blocks for replication. However, the underlying mechanisms of virus-induced alterations to host metabolism are largely unknown. Noroviruses (NoVs) are highly prevalent pathogens that cause sporadic and epidemic viral gastroenteritis. In the present study, we uncovered several strain-specific and shared host cell metabolic requirements of three murine norovirus (MNV) strains, the acute MNV-1 strain and the persistent CR3 and CR6 strains. While all three strains required glycolysis, glutaminolysis, and the pentose phosphate pathway for optimal infection of macrophages, only MNV-1 relied on host oxidative phosphorylation. Furthermore, the first metabolic flux analysis of NoV-infected cells revealed that both glycolysis and glutaminolysis are upregulated during MNV-1 infection of macrophages. Glutamine deprivation affected the MNV lifecycle at the stage of genome replication, resulting in decreased non-structural and structural protein synthesis, viral assembly, and egress. Mechanistic studies further showed that MNV infection and overexpression of the MNV non-structural protein NS1/2 increased the enzymatic activity of the rate-limiting enzyme glutaminase. In conclusion, the inaugural investigation of NoV-induced alterations to host glutaminolysis identified the first viral regulator of glutaminolysis for RNA viruses, which increases our fundamental understanding of virus-induced metabolic alterations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA