Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746089

RESUMEN

We have identified a NMIIA and IIB-specific small molecule inhibitor, MT-125, and have studied its effects in GBM. MT-125 has high brain penetrance and retention and an excellent safety profile; blocks GBM invasion and cytokinesis, consistent with the known roles of NMII; and prolongs survival as a single agent in murine GBM models. MT-125 increases signaling along both the PDGFR- and MAPK-driven pathways through a mechanism that involves the upregulation of reactive oxygen species, and it synergizes with FDA-approved PDGFR and mTOR inhibitors in vitro . Combining MT-125 with sunitinib, a PDGFR inhibitor, or paxalisib, a combined PI3 Kinase/mTOR inhibitor significantly improves survival in orthotopic GBM models over either drug alone, and in the case of sunitinib, markedly prolongs survival in ∼40% of mice. Our results provide a powerful rationale for developing NMII targeting strategies to treat cancer and demonstrate that MT-125 has strong clinical potential for the treatment of GBM. Highlights: MT-125 is a highly specific small molecule inhibitor of non-muscle myosin IIA and IIB, is well-tolerated, and achieves therapeutic concentrations in the brain with systemic dosing.Treating preclinical models of glioblastoma with MT-125 produces durable improvements in survival.MT-125 stimulates PDGFR- and MAPK-driven signaling in glioblastoma and increases dependency on these pathways.Combining MT-125 with an FDA-approved PDGFR inhibitor in a mouse GBM model synergizes to improve median survival over either drug alone, and produces tumor free, prolonged survival in over 40% of mice.

2.
Nat Microbiol ; 8(12): 2304-2314, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37919425

RESUMEN

Counting viable cells is a universal practice in microbiology. The colony-forming unit (CFU) assay has remained the gold standard to measure viability across disciplines, but it is time-intensive and resource-consuming. Here we describe the geometric viability assay (GVA) that replicates CFU measurements over 6 orders of magnitude while reducing over 10-fold the time and consumables required. GVA computes a sample's viable cell count on the basis of the distribution of embedded colonies growing inside a pipette tip. GVA is compatible with Gram-positive and Gram-negative planktonic bacteria (Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis), biofilms and fungi (Saccharomyces cerevisiae). Laborious CFU experiments such as checkerboard assays, treatment time-courses and drug screens against slow-growing cells are simplified by GVA. The ease and low cost of GVA evinces that it can replace existing viability assays and enable viability measurements at previously impractical scales.


Asunto(s)
Biopelículas , Escherichia coli , Recuento de Colonia Microbiana , Bacterias Gramnegativas , Pseudomonas aeruginosa
3.
mBio ; : e0249223, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921493

RESUMEN

New approaches for combating microbial infections are needed. One strategy for disrupting pathogenesis involves developing compounds that interfere with bacterial virulence. A critical molecular determinant of virulence for Gram-negative bacteria are efflux pumps of the resistance-nodulation-division family, which includes AcrAB-TolC. We previously identified small molecules that bind AcrB, inhibit AcrAB-TolC, and do not appear to damage membranes. These efflux pump modulators (EPMs) were discovered in an in-cell screening platform called SAFIRE (Screen for Anti-infectives using Fluorescence microscopy of IntracellulaR Enterobacteriaceae). SAFIRE identifies compounds that disrupt the growth of a Gram-negative human pathogen, Salmonella enterica serotype Typhimurium (S. Typhimurium), in macrophages. We used medicinal chemistry to iteratively design ~200 EPM35 analogs and test them for activity in SAFIRE, generating compounds with nanomolar potency. Analogs were demonstrated to bind AcrB in a substrate binding pocket by cryo-electron microscopy. Despite having amphipathic structures, the EPM analogs do not disrupt membrane voltage, as monitored by FtsZ localization to the cell septum. The EPM analogs had little effect on bacterial growth in standard Mueller Hinton Broth. However, under broth conditions that mimic the micro-environment of the macrophage phagosome, acrAB is required for growth, the EPM analogs are bacteriostatic, and the EPM analogs increase the potency of antibiotics. These data suggest that under macrophage-like conditions, the EPM analogs prevent the export of a toxic bacterial metabolite(s) through AcrAB-TolC. Thus, compounds that bind AcrB could disrupt infection by specifically interfering with the export of bacterial toxic metabolites, host defense factors, and/or antibiotics.IMPORTANCEBacterial efflux pumps are critical for resistance to antibiotics and for virulence. We previously identified small molecules that inhibit efflux pumps (efflux pump modulators, EPMs) and prevent pathogen replication in host cells. Here, we used medicinal chemistry to increase the activity of the EPMs against pathogens in cells into the nanomolar range. We show by cryo-electron microscopy that these EPMs bind an efflux pump subunit. In broth culture, the EPMs increase the potency (activity), but not the efficacy (maximum effect), of antibiotics. We also found that bacterial exposure to the EPMs appear to enable the accumulation of a toxic metabolite that would otherwise be exported by efflux pumps. Thus, inhibitors of bacterial efflux pumps could interfere with infection not only by potentiating antibiotics, but also by allowing toxic waste products to accumulate within bacteria, providing an explanation for why efflux pumps are needed for virulence in the absence of antibiotics.

4.
bioRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37786697

RESUMEN

New approaches for combatting microbial infections are needed. One strategy for disrupting pathogenesis involves developing compounds that interfere with bacterial virulence. A critical molecular determinant of virulence for Gram-negative bacteria are efflux pumps of the resistance-nodulation-division (RND) family, which includes AcrAB-TolC. We previously identified small molecules that bind AcrB, inhibit AcrAB-TolC, and do not appear to damage membranes. These efflux pump modulators (EPMs) were discovered in an in-cell screening platform called SAFIRE (Screen for Anti-infectives using Fluorescence microscopy of IntracellulaR Enterobacteriaceae). SAFIRE identifies compounds that disrupt the growth of a Gram-negative human pathogen, Salmonella enterica serotype Typhimurium (S. Typhimurium) in macrophages. We used medicinal chemistry to iteratively design ~200 EPM35 analogs and test them for activity in SAFIRE, generating compounds with nanomolar potency. Analogs were demonstrated to bind AcrB in a substrate binding pocket by cryo-electron microscopy (cryo-EM). Despite having amphipathic structures, the EPM analogs do not disrupt membrane voltage, as monitored by FtsZ localization to the cell septum. The EPM analogs had little effect on bacterial growth in standard Mueller Hinton Broth. However, under broth conditions that mimic the micro-environment of the macrophage phagosome, acrAB is required for growth, the EPM analogs are bacteriostatic, and increase the potency of antibiotics. These data suggest that under macrophage-like conditions the EPM analogs prevent the export of a toxic bacterial metabolite(s) through AcrAB-TolC. Thus, compounds that bind AcrB could disrupt infection by specifically interfering with the export of bacterial toxic metabolites, host defense factors, and/or antibiotics.

5.
J Child Psychol Psychiatry ; 64(12): 1665-1678, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37644651

RESUMEN

BACKGROUND: Given the robust evidence base for the efficacy of evidence-based treatments targeting youth anxiety, researchers have advanced beyond efficacy outcome analysis to identify mechanisms of change and treatment directionality. Grounded in developmental transactional models, interventions for young children at risk for anxiety by virtue of behaviorally inhibited temperament often target parenting and child factors implicated in the early emergence and maintenance of anxiety. In particular, overcontrolling parenting moderates risk for anxiety among highly inhibited children, just as child inhibition has been shown to elicit overcontrolling parenting. Although longitudinal research has elucidated the temporal unfolding of factors that interact to place inhibited children at risk for anxiety, reciprocal transactions between these child and parent factors in the context of early interventions remain unknown. METHOD: This study addresses these gaps by examining mechanisms of change and treatment directionality (i.e., parent-to-child vs. child-to-parent influences) within a randomized controlled trial comparing two interventions for inhibited preschoolers (N = 151): the multicomponent Turtle Program ('Turtle') and the parent-only Cool Little Kids program ('CLK'). Reciprocal relations between parent-reported child anxiety, observed parenting, and parent-reported accommodation of child anxiety were examined across four timepoints: pre-, mid-, and post-treatment, and one-year follow-up (NCT02308826). RESULTS: Hypotheses were tested via latent curve models with structured residuals (LCM-SR) and latent change score (LCS) models. LCM-SR results were consistent with the child-to-parent influences found in previous research on cognitive behavioral therapy (CBT) for older anxious youth, but only emerged in Turtle. LCS analyses revealed bidirectional effects of changes in parent accommodation and child anxiety during and after intervention, but only in Turtle. CONCLUSION: Our findings coincide with developmental transactional models, suggesting that the development of child anxiety may result from child-to-parent influences rather than the reverse, and highlight the importance of targeting parent and child factors simultaneously in early interventions for young, inhibited children.


Asunto(s)
Terapia Cognitivo-Conductual , Responsabilidad Parental , Adolescente , Humanos , Preescolar , Responsabilidad Parental/psicología , Trastornos de Ansiedad/terapia , Trastornos de Ansiedad/psicología , Ansiedad/terapia , Ansiedad/psicología , Padres/psicología
6.
Sci Adv ; 9(31): eadg3028, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540744

RESUMEN

How dynamic bacterial calcium is regulated, with kinetics faster than typical mechanisms of cellular adaptation, is unknown. We discover bacterial calcium fluctuations are temporal-fractals resulting from a property known as self-organized criticality (SOC). SOC processes are poised at a phase transition separating ordered and chaotic dynamical regimes and are observed in many natural and anthropogenic systems. SOC in bacterial calcium emerges due to calcium channel coupling mediated via membrane voltage. Environmental or genetic perturbations modify calcium dynamics and the critical exponent suggesting a continuum of critical attractors. Moving along this continuum alters the collective information capacity of bacterial populations. We find that the stochastic transition from motile to sessile lifestyle is partially mediated by SOC-governed calcium fluctuations through the regulation of c-di-GMP. In summary, bacteria co-opt the physics of phase transitions to maintain dynamic calcium equilibrium, and this enables cell-autonomous population diversification during surface colonization by leveraging the stochasticity inherent at a boundary between phases.


Asunto(s)
Bacterias , Calcio , Bacterias/genética
7.
bioRxiv ; 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36712102

RESUMEN

Counting viable cells is a universal practice in microbiology. The colony forming unit (CFU) assay has remained the gold standard to measure viability across disciplines; however, it is time-intensive and resource-consuming. Herein, we describe the Geometric Viability Assay (GVA) that replicates CFU measurements over 6-orders of magnitude while reducing over 10-fold the time and consumables. GVA computes a sample's viable cell count based on the distribution of embedded colonies growing inside a pipette tip. GVA is compatible with gram-positive and -negative planktonic bacteria, biofilms, and yeast. Laborious CFU experiments such as checkerboard assays, treatment time-courses, and drug screens against slow-growing cells are simplified by GVA. We therefore screened a drug library against exponential and stationary phase E. coli leading to the discovery of the ROS-mediated, bactericidal mechanism of diphenyliodonium. The ease and low cost of GVA evinces it can accelerate existing viability assays and enable measurements at previously impractical scales.

9.
Front Immunol ; 13: 936129, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059502

RESUMEN

With the clinical approval of T-cell-dependent immune checkpoint inhibitors for many cancers, therapeutic cancer vaccines have re-emerged as a promising immunotherapy. Cancer vaccines require the addition of immunostimulatory adjuvants to increase vaccine immunogenicity, and increasingly multiple adjuvants are used in combination to bolster further and shape cellular immunity to tumor antigens. However, rigorous quantification of adjuvants' synergistic interactions is challenging due to partial redundancy in costimulatory molecules and cytokine production, leading to the common assumption that combining both adjuvants at the maximum tolerated dose results in optimal efficacy. Herein, we examine this maximum dose assumption and find combinations of these doses are suboptimal. Instead, we optimized dendritic cell activation by extending the Multidimensional Synergy of Combinations (MuSyC) framework that measures the synergy of efficacy and potency between two vaccine adjuvants. Initially, we performed a preliminary in vitro screening of clinically translatable adjuvant receptor targets (TLR, STING, NLL, and RIG-I). We determined that STING agonist (CDN) plus TLR4 agonist (MPL-A) or TLR7/8 agonist (R848) as the best pairwise combinations for dendritic cell activation. In addition, we found that the combination of R848 and CDN is synergistically efficacious and potent in activating both murine and human antigen-presenting cells (APCs) in vitro. These two selected adjuvants were then used to estimate a MuSyC-dose optimized for in vivo T-cell priming using ovalbumin-based peptide vaccines. Finally, using B16 melanoma and MOC1 head and neck cancer models, MuSyC-dose-based adjuvating of cancer vaccines improved the antitumor response, increased tumor-infiltrating lymphocytes, and induced novel myeloid tumor infiltration changes. Further, the MuSyC-dose-based adjuvants approach did not cause additional weight changes or increased plasma cytokine levels compared to CDN alone. Collectively, our findings offer a proof of principle that our MuSyC-extended approach can be used to optimize cancer vaccine formulations for immunotherapy.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Adyuvantes Inmunológicos/farmacología , Adyuvantes Farmacéuticos/farmacología , Animales , Vacunas contra el Cáncer/uso terapéutico , Citocinas , Humanos , Inmunoterapia/métodos , Ratones , Ratones Endogámicos C57BL , Neoplasias/terapia , Eficacia de las Vacunas
10.
Leukemia ; 36(10): 2396-2407, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35999260

RESUMEN

Internal tandem duplications (ITD) in the receptor tyrosine kinase FLT3 occur in 25 % of acute myeloid leukemia (AML) patients, drive leukemia progression and confer a poor prognosis. Primary resistance to FLT3 kinase inhibitors (FLT3i) quizartinib, crenolanib and gilteritinib is a frequent clinical challenge and occurs in the absence of identifiable genetic causes. This suggests that adaptive cellular mechanisms mediate primary resistance to on-target FLT3i therapy. Here, we systematically investigated acute cellular responses to on-target therapy with multiple FLT3i in FLT3-ITD + AML using recently developed functional translatome proteomics (measuring changes in the nascent proteome) with phosphoproteomics. This pinpointed AKT-mTORC1-ULK1-dependent autophagy as a dominant resistance mechanism to on-target FLT3i therapy. FLT3i induced autophagy in a concentration- and time-dependent manner specifically in FLT3-ITD + cells in vitro and in primary human AML cells ex vivo. Pharmacological or genetic inhibition of autophagy increased the sensitivity to FLT3-targeted therapy in cell lines, patient-derived xenografts and primary AML cells ex vivo. In mice xenografted with FLT3-ITD + AML cells, co-treatment with oral FLT3 and autophagy inhibitors synergistically impaired leukemia progression and extended overall survival. Our findings identify a molecular mechanism responsible for primary FLT3i treatment resistance and demonstrate the pre-clinical efficacy of a rational combination treatment strategy targeting both FLT3 and autophagy induction.


Asunto(s)
Leucemia Mieloide Aguda , Proteómica , Animales , Autofagia , Resistencia a Antineoplásicos , Humanos , Leucemia Mieloide Aguda/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteoma , Proteínas Proto-Oncogénicas c-akt , Tirosina Quinasa 3 Similar a fms/uso terapéutico
11.
Cell Rep ; 39(12): 110991, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732128

RESUMEN

Inhibitors of the mitotic kinesin Kif11 are anti-mitotics that, unlike vinca alkaloids or taxanes, do not disrupt microtubules and are not neurotoxic. However, development of resistance has limited their clinical utility. While resistance to Kif11 inhibitors in other cell types is due to mechanisms that prevent these drugs from disrupting mitosis, we find that in glioblastoma (GBM), resistance to the Kif11 inhibitor ispinesib works instead through suppression of apoptosis driven by activation of STAT3. This form of resistance requires dual phosphorylation of STAT3 residues Y705 and S727, mediated by SRC and epidermal growth factor receptor (EGFR), respectively. Simultaneously inhibiting SRC and EGFR reverses this resistance, and combined targeting of these two kinases in vivo with clinically available inhibitors is synergistic and significantly prolongs survival in ispinesib-treated GBM-bearing mice. We thus identify a translationally actionable approach to overcoming Kif11 inhibitor resistance that may work to block STAT3-driven resistance against other anti-cancer therapies as well.


Asunto(s)
Antimitóticos , Glioblastoma , Animales , Antimitóticos/farmacología , Línea Celular Tumoral , Receptores ErbB/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Cinesinas , Ratones , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
12.
Nat Commun ; 12(1): 4607, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326325

RESUMEN

Drug combination discovery depends on reliable synergy metrics but no consensus exists on the correct synergy criterion to characterize combined interactions. The fragmented state of the field confounds analysis, impedes reproducibility, and delays clinical translation of potential combination treatments. Here we present a mass-action based formalism to quantify synergy. With this formalism, we clarify the relationship between the dominant drug synergy principles, and present a mapping of commonly used frameworks onto a unified synergy landscape. From this, we show how biases emerge due to intrinsic assumptions which hinder their broad applicability and impact the interpretation of synergy in discovery efforts. Specifically, we describe how traditional metrics mask consequential synergistic interactions, and contain biases dependent on the Hill-slope and maximal effect of single-drugs. We show how these biases systematically impact synergy classification in large combination screens, potentially misleading discovery efforts. Thus the proposed formalism can provide a consistent, unbiased interpretation of drug synergy, and accelerate the translatability of synergy studies.


Asunto(s)
Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Benchmarking/métodos , Benchmarking/normas , Consenso , Combinación de Medicamentos , Descubrimiento de Drogas/normas , Sinergismo Farmacológico , Humanos , Modelos Teóricos , Programas Informáticos
13.
Microorganisms ; 9(5)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063175

RESUMEN

Changes in bacterial physiology necessarily precede cell death in response to antibiotics. Herein we investigate the early disruption of Ca2+ homeostasis as a marker for antibiotic response. Using a machine learning framework, we quantify the temporal information encoded in single-cell Ca2+ dynamics. We find Ca2+ dynamics distinguish kanamycin sensitive and resistant cells before changes in gross cell phenotypes such as cell growth or protein stability. The onset time (pharmacokinetics) and probability (pharmacodynamics) of these aberrant Ca2+ dynamics are dose and time-dependent, even at the resolution of single-cells. Of the compounds profiled, we find Ca2+ dynamics are also an indicator of Polymyxin B activity. In Polymyxin B treated cells, we find aberrant Ca2+ dynamics precedes the entry of propidium iodide marking membrane permeabilization. Additionally, we find modifying membrane voltage and external Ca2+ concentration alters the time between these aberrant dynamics and membrane breakdown suggesting a previously unappreciated role of Ca2+ in the membrane destabilization during Polymyxin B treatment. In conclusion, leveraging live, single-cell, Ca2+ imaging coupled with machine learning, we have demonstrated the discriminative capacity of Ca2+ dynamics in identifying antibiotic-resistant bacteria.

14.
Trends Pharmacol Sci ; 41(4): 266-280, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32113653

RESUMEN

Even as the clinical impact of drug combinations continues to accelerate, no consensus on how to quantify drug synergy has emerged. Rather, surveying the landscape of drug synergy reveals the persistence of historical fissures regarding the appropriate domains of conflicting synergy models - fissures impacting all aspects of combination therapy discovery and deployment. Herein we chronicle the impact of these divisions on: (i) the design, interpretation, and reproducibility of high-throughput combination screens; (ii) the performance of algorithms to predict synergistic mixtures; and (iii) the search for higher-order synergistic interactions. Further progress in each of these subfields hinges on reaching a consensus regarding the long-standing rifts in the field.


Asunto(s)
Sinergismo Farmacológico , Quimioterapia Combinada , Humanos
15.
Cell Mol Gastroenterol Hepatol ; 8(4): 579-594, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31310834

RESUMEN

BACKGROUND & AIMS: Activating mutation of the KRAS gene is common in some cancers, such as pancreatic cancer, but rare in other cancers. Chronic pancreatitis is a predisposing condition for pancreatic ductal adenocarcinoma (PDAC), but how it synergizes with KRAS mutation is not known. METHODS: We used a mouse model to express an activating mutation of Kras in conjunction with obstruction of the main pancreatic duct to recapitulate a common etiology of human chronic pancreatitis. Because the cell of origin of PDAC is not clear, Kras mutation was introduced into either duct cells or acinar cells. RESULTS: Although KrasG12D expression in both cell types was protective against damage-associated cell death, chronic pancreatitis induced p53, p21, and growth arrest only in acinar-derived cells. Mutant duct cells did not elevate p53 or p21 expression and exhibited increased proliferation driving the appearance of PDAC over time. CONCLUSIONS: One mechanism by which tissues may be susceptible or resistant to KRASG12D-initiated tumorigenesis is whether they undergo a p53-mediated damage response. In summary, we have uncovered a mechanism by which inflammation and intrinsic cellular programming synergize for the development of PDAC.


Asunto(s)
Pancreatitis Crónica/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células Acinares/metabolismo , Animales , Carcinogénesis/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Genes ras , Metaplasia , Ratones , Mutación , Neoplasias Pancreáticas/patología , Pancreatitis Crónica/genética , Lesiones Precancerosas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Neoplasias Pancreáticas
16.
Cell Syst ; 8(2): 97-108.e16, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30797775

RESUMEN

Two goals motivate treating diseases with drug combinations: reduce off-target toxicity by minimizing doses (synergistic potency) and improve outcomes by escalating effect (synergistic efficacy). Established drug synergy frameworks obscure such distinction, failing to harness the potential of modern chemical libraries. We therefore developed multi-dimensional synergy of combinations (MuSyC), a formalism based on a generalized, multi-dimensional Hill equation, which decouples synergistic potency and efficacy. In mutant-EGFR-driven lung cancer, MuSyC reveals that combining a mutant-EGFR inhibitor with inhibitors of other kinases may result only in synergistic potency, whereas synergistic efficacy can be achieved by co-targeting mutant-EGFR and epigenetic regulation or microtubule polymerization. In mutant-BRAF melanoma, MuSyC determines whether a molecular correlate of BRAFi insensitivity alters a BRAF inhibitor's potency, efficacy, or both. These findings showcase MuSyC's potential to transform the enterprise of drug-combination screens by precisely guiding translation of combinations toward dose reduction, improved efficacy, or both.


Asunto(s)
Combinación de Medicamentos , Sinergismo Farmacológico , Melanoma/tratamiento farmacológico , Humanos
17.
Sci Rep ; 7: 42604, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28205616

RESUMEN

Dysregulated metabolism can broadly affect therapy resistance by influencing compensatory signaling and expanding proliferation. Given many BRAF-mutated melanoma patients experience disease progression with targeted BRAF inhibitors, we hypothesized therapeutic response is related to tumor metabolic phenotype, and that altering tumor metabolism could change therapeutic outcome. We demonstrated the proliferative kinetics of BRAF-mutated melanoma cells treated with the BRAF inhibitor PLX4720 fall along a spectrum of sensitivity, providing a model system to study the interplay of metabolism and drug sensitivity. We discovered an inverse relationship between glucose availability and sensitivity to BRAF inhibition through characterization of metabolic phenotypes using nearly a dozen metabolic parameters in Principle Component Analysis. Subsequently, we generated rho0 variants that lacked functional mitochondrial respiration and increased glycolytic metabolism. The rho0 cell lines exhibited increased sensitivity to PLX4720 compared to the respiration-competent parental lines. Finally, we utilized the FDA-approved antiretroviral drug zalcitabine to suppress mitochondrial respiration and to force glycolysis in our cell line panel, resulting in increased PLX4720 sensitivity via shifts in EC50 and Hill slope metrics. Our data suggest that forcing tumor glycolysis in melanoma using zalcitabine or other similar approaches may be an adjunct to increase the efficacy of targeted BRAF therapy.


Asunto(s)
Antineoplásicos/farmacología , Melanoma/genética , Melanoma/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Glucosa/metabolismo , Glucólisis , Humanos , Indoles/farmacología , Indoles/uso terapéutico , Melanoma/tratamiento farmacológico , Terapia Molecular Dirigida , Oncogenes , Variantes Farmacogenómicas , Fenotipo , Inhibidores de Proteínas Quinasas/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...