Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 283(46): 31303-14, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18779325

RESUMEN

To analyze the cardiac functions of AE3, we disrupted its gene (Slc4a3) in mice. Cl(-)/HCO3(-) exchange coupled with Na+-dependent acid extrusion can mediate pH-neutral Na+ uptake, potentially affecting Ca2+ handling via effects on Na+/Ca2+ exchange. AE3 null mice appeared normal, however, and AE3 ablation had no effect on ischemia-reperfusion injury in isolated hearts or cardiac performance in vivo. The NKCC1 Na+-K+-2Cl(-) cotransporter also mediates Na+ uptake, and loss of NKCC1 alone does not impair contractility. To further stress the AE3-deficient myocardium, we combined the AE3 and NKCC1 knock-outs. Double knock-outs had impaired contraction and relaxation both in vivo and in isolated ventricular myocytes. Ca2+ transients revealed an apparent increase in Ca2+ clearance in double null cells. This was unlikely to result from increased Ca2+ sequestration, since the ratio of phosphorylated phospholamban to total phospholamban was sharply reduced in all three mutant hearts. Instead, Na+/Ca2+ exchanger activity was found to be enhanced in double null cells. Systolic Ca2+ was unaltered, however, suggesting more direct effects on the contractile apparatus of double null myocytes. Expression of the catalytic subunit of protein phosphatase 1 was increased in all mutant hearts. There was also a dramatic reversal, between single null and double null hearts, in the carboxymethylation and localization to the myofibrillar fraction, of the catalytic subunit of protein phosphatase 2A, which corresponded to the loss of normal contractility in double null hearts. These data show that AE3 and NKCC1 affect Ca2+ handling, PLN regulation, and expression and localization of major cardiac phosphatases and that their combined loss impairs cardiac function.


Asunto(s)
Antiportadores/metabolismo , Calcio/metabolismo , Contracción Miocárdica , Fosfoproteínas Fosfatasas/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Animales , Antiportadores/deficiencia , Antiportadores/genética , Sistema Cardiovascular/metabolismo , Fertilidad , Ratones , Ratones Noqueados , Mutación/genética , Fosforilación , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Simportadores de Cloruro de Sodio-Potasio/deficiencia , Simportadores de Cloruro de Sodio-Potasio/genética , Miembro 2 de la Familia de Transportadores de Soluto 12 , Regulación hacia Arriba
2.
Am J Physiol Gastrointest Liver Physiol ; 291(4): G689-99, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16690903

RESUMEN

The mechanism of apical Na(+)-dependent H(+) extrusion in colonic crypts is controversial. With the use of confocal microscopy of the living mouse distal colon loaded with BCECF or SNARF-5F (fluorescent pH sensors), measurements of intracellular pH (pH(i)) in epithelial cells at either the crypt base or colonic surface were reported. After cellular acidification, the addition of luminal Na(+) stimulated similar rates of pH(i) recovery in cells at the base of distal colonic crypts of wild-type or Na(+)/H(+) exchanger isoform 2 (NHE2)-null mice. In wild-type crypts, 20 microM HOE694 (NHE2 inhibitor) blocked 68-75% of the pH(i) recovery rate, whereas NHE2-null crypts were insensitive to HOE694, the NHE3-specific inhibitor S-1611 (20 microM), or the bicarbonate transport inhibitor 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS; 1 mM). A general NHE inhibitor, 5-(N-ethyl-N-isopropyl)amiloride (EIPA; 20 microM), inhibited pH(i) recovery in NHE2-null mice (46%) but less strongly than in wild-type mice (74%), suggesting both EIPA-sensitive and -insensitive compensatory mechanisms. Transepithelial Na(+) leakage followed by activation of basolateral NHE1 could confound the outcomes; however, the rates of Na(+)-dependent pH(i) recovery were independent of transepithelial leakiness to lucifer yellow and were unchanged in NHE1-null mice. NHE2 was immunolocalized on apical membranes of wild-type crypts but not NHE2-null tissue. NHE3 immunoreactivity was near the colonic surface but not at the crypt base in NHE2-null mice. Colonic surface cells from wild-type mice demonstrated S1611- and HOE694-sensitive pH(i) recovery in response to luminal sodium, confirming a functional role for both NHE3 and NHE2 at this site. We conclude that constitutive absence of NHE2 results in a compensatory increase in a Na(+)-dependent, EIPA-sensitive acid extruder distinct from NHE1, NHE3, or SITS-sensitive transporters.


Asunto(s)
Ácidos/metabolismo , Colon/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Colon/citología , Colon/efectos de los fármacos , Regulación de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Intercambiador 1 de Sodio-Hidrógeno , Intercambiador 3 de Sodio-Hidrógeno , Regulación hacia Arriba
3.
Am J Physiol Renal Physiol ; 290(2): F409-16, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16159893

RESUMEN

NKCC1 null mice are hypotensive, in part, from the absence of NKCC1-mediated vasoconstriction. Whether these mice have renal defects in NaCl and water handling which contribute to the hypotension is unexplored. Therefore, we asked 1) whether NKCC1 (-/-) mice have a defect in the regulation of NaCl and water balance, which might contribute to the observed hypotension and 2) whether the hypotension observed in these mice is accompanied by endocrine abnormalities and/or downregulation of renal Na+ transporter expression. Thus we performed balance studies, semiquantitative immunoblotting, and immunohistochemistry of kidney tissue from NKCC1 (+/+) and NKCC1 (-/-) mice which consumed either a high (2.8% NaCl)- or a low-NaCl (0.01% NaCl) diet for 7 days. Blood pressure was lower in NKCC1 (-/-) than NKCC1 (+/+) mice following either high or low dietary NaCl intake. Relative to wild-type mice, NKCC1 null mice had a lower plasma ANP concentration, a higher plasma renin and a higher serum K+ concentration with inappropriately low urinary K+ excretion, although serum aldosterone was either the same or only slightly increased in the mutant mice. Expression of NHE3, the alpha-subunit of the Na-K-ATPase, NCC, and NKCC2 were higher in NKCC1 null than in wild-type mice, although differences were generally greater during NaCl restriction. NKCC1 null mice had a reduced capacity to excrete free water than wild-type mice, which resulted in hypochloremia following the NaCl-deficient diet. Hypochloremia did not occur from increased aquaporin-1 (AQP1) or 2 protein expression or from redistribution of AQP2 to the apical regions of principal cells. Instead, NKCC1 null mice had a blunted increase in urinary osmolality following vasopressin administration, which should increase free water excretion and attenuate the hypochloremia. In conclusion, aldosterone release is inappropriately low in NKCC1 null mice. Moreover, the action of aldosterone and vasopressin is altered within kidneys of NKCC1 null mice, which likely contributes to their hypotension. Increased Na+ transporter expression, increased plasma renin, and reduced plasma ANP, as observed in NKCC1 null mice, should increase vascular volume and blood pressure, thus minimizing hypotension.


Asunto(s)
Hipotensión/fisiopatología , Riñón/metabolismo , Simportadores de Cloruro de Sodio-Potasio/fisiología , Aldosterona/sangre , Animales , Cloruros/sangre , Cloruros/orina , Hipotensión/genética , Ratones , Ratones Transgénicos , Tamaño de los Órganos , Renina/sangre , Renina/metabolismo , Canales de Sodio/metabolismo , Sodio en la Dieta/farmacología , Simportadores de Cloruro de Sodio-Potasio/genética , Miembro 2 de la Familia de Transportadores de Soluto 12 , Vasopresinas/metabolismo , Agua/metabolismo
4.
Am J Physiol Renal Physiol ; 287(6): F1244-9, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15292047

RESUMEN

In the medullary thick ascending limb (MTAL) of rat kidney, inhibiting basolateral Na(+)/H(+) exchange with either amiloride or nerve growth factor (NGF) results secondarily in inhibition of apical Na(+)/H(+) exchange, thereby decreasing transepithelial HCO(3)(-) absorption. To assess the possible role of the Na(+)/H(+) exchanger NHE1 in this regulatory process, MTALs from wild-type and NHE1 knockout (NHE1(-/-)) mice were studied using in vitro microperfusion. The rate of HCO(3)(-) absorption was decreased 60% in NHE1(-/-) MTALs (15.4 +/- 0.5 pmol.min(-1).mm(-1) wild-type vs. 6.0 +/- 0.5 pmol.min(-1).mm(-1) NHE1(-/-)). Transepithelial voltage, an index of the NaCl absorption rate, did not differ in wild-type and NHE1(-/-) MTALs. Basolateral addition of 10 microM amiloride or 0.7 nM NGF decreased HCO(3)(-) absorption by 45-49% in wild-type MTALs but had no effect on HCO(3)(-) absorption in NHE1(-/-) MTALs. Inhibition of HCO(3)(-) absorption by vasopressin and stimulation by hyposmolality, both of which regulate MTAL HCO(3)(-) absorption through primary effects on apical Na(+)/H(+) exchange, were similar in wild-type and NHE1(-/-) MTALs. Thus the regulatory defect in NHE1(-/-) MTALs is specific for factors (bath amiloride and NGF) shown previously to inhibit HCO(3)(-) absorption through primary effects on basolateral Na(+)/H(+) exchange. These findings demonstrate a novel role for NHE1 in transepithelial HCO(3)(-) absorption in the MTAL, in which basolateral NHE1 controls the activity of apical NHE3. Paradoxically, a reduction in NHE1-mediated H(+) extrusion across the basolateral membrane leads to a decrease in apical Na(+)/H(+) exchange activity that reduces HCO(3)(-) absorption.


Asunto(s)
Bicarbonatos/metabolismo , Proteínas de Transporte de Catión/fisiología , Médula Renal/metabolismo , Proteínas de la Membrana/fisiología , Intercambiadores de Sodio-Hidrógeno/fisiología , Absorción , Amilorida/farmacología , Animales , Arginina Vasopresina/farmacología , Proteínas de Transporte de Catión/deficiencia , Cinética , Asa de la Nefrona/metabolismo , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Factor de Crecimiento Nervioso/farmacología , Concentración Osmolar , Intercambiador 1 de Sodio-Hidrógeno
5.
Am J Physiol Cell Physiol ; 287(1): C12-21, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15013953

RESUMEN

The ubiquitously expressed Na(+)/H(+) exchanger isoform 1 (NHE1) functions as a major intracellular pH (pH(i)) regulatory mechanism in many cell types, and in some tissues its activity may contribute to ischemic injury. In the present study, cortical astrocyte cultures from wild-type (NHE1(+/+)) and NHE1-deficient (NHE1(-/-)) mice were used to investigate the role of NHE1 in pH(i) recovery and ischemic injury in astrocytes. In the absence of HCO(3)(-), the mean resting pH(i) levels were 6.86 +/- 0.03 in NHE1(+/+) astrocytes and 6.53 +/- 0.04 in NHE1(-/-) astrocytes. Removal of extracellular Na(+) or blocking of NHE1 activity by the potent NHE1 inhibitor HOE-642 significantly reduced the resting level of pH(i) in NHE1(+/+) astrocytes. NHE1(+/+) astrocytes exhibited a rapid pH(i) recovery (0.33 +/- 0.08 pH unit/min) after NH(4)Cl prepulse acid load. The pH(i) recovery in NHE1(+/+) astrocytes was reversibly inhibited by HOE-642 or removal of extracellular Na(+). In NHE1(-/-) astrocytes, the pH(i) recovery after acidification was impaired and not affected by either Na(+)-free conditions or HOE-642. Furthermore, 2 h of oxygen and glucose deprivation (OGD) led to an approximately 80% increase in pH(i) recovery rate in NHE1(+/+) astrocytes. OGD induced a 5-fold rise in intracellular [Na(+)] and 26% swelling in NHE1(+/+) astrocytes. HOE-642 or genetic ablation of NHE1 significantly reduced the Na(+) rise and swelling after OGD. These results suggest that NHE1 is the major pH(i) regulatory mechanism in cortical astrocytes and that ablation of NHE1 in astrocytes attenuates ischemia-induced disruption of ionic regulation and swelling.


Asunto(s)
Adaptación Fisiológica , Astrocitos/fisiología , Hipoxia de la Célula/fisiología , Glucosa/deficiencia , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Concentración de Iones de Hidrógeno , Membranas Intracelulares/metabolismo , Ratones , Ratones Noqueados/genética , Concentración Osmolar , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética
6.
Circ Res ; 93(8): 776-82, 2003 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-12970112

RESUMEN

Pharmacological studies indicate that Na+-H+ exchanger isoform 1 (NHE1) plays a central role in myocardial ischemia-reperfusion injury; however, confirmation by alternative methods is lacking. To address this issue, we examined the role of NHE1 in ischemia-reperfusion injury using gene-targeted NHE1-null mutant (Nhe1-/-) mice. Nhe1-/- and wild-type hearts were perfused in a Langendorff apparatus in both the absence and presence of the NHE1 inhibitor eniporide, subjected to 40 minutes of ischemia and 30 minutes of reperfusion, and the effects of genetic ablation or inhibition of NHE1 on hemodynamic, biochemical, and pathological changes were assessed. In the absence of eniporide, left ventricular developed pressure, end-diastolic pressure, and coronary flow were significantly less impaired in Nhe1-/- hearts relative to wild-type hearts, and release of lactate dehydrogenase, morphological damage, and ATP depletion were also significantly less. In the presence of eniporide, however, wild-type hearts were significantly protected and there were no significant differences between the two genotypes with respect to cardiac performance, lactate dehydrogenase release, or morphological damage. Furthermore, the presence or absence of eniporide had no apparent effect on the degree of cardioprotection observed in Nhe1-/- hearts. These data demonstrate that genetic ablation of NHE1 protects the heart against ischemia-reperfusion injury. In addition to providing direct evidence that confirms previous pharmacological studies indicating a role for NHE1 in ischemia-reperfusion injury, these results suggest that the long-term absence of NHE1 does not elicit major compensatory changes that might negate the cardioprotective effects of blocking its activity over the short-term.


Asunto(s)
Daño por Reperfusión Miocárdica/etiología , Intercambiadores de Sodio-Hidrógeno/fisiología , Adenosina Trifosfato/metabolismo , Animales , Femenino , Guanidinas/farmacología , Corazón/fisiopatología , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones , Ratones Noqueados , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/genética , Sulfonas/farmacología
7.
Am J Physiol Heart Circ Physiol ; 283(5): H1846-55, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12384462

RESUMEN

The basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) functions in the maintenance of cellular electrolyte and volume homeostasis. NKCC1-deficient (Nkcc1(-/-)) mice were used to examine its role in cardiac function and in the maintenance of blood pressure and vascular tone. Tail-cuff measurements demonstrated that awake Nkcc1(-/-) mice had significantly lower systolic blood pressure than wild-type (Nkcc1(+/+)) mice (114.5 +/- 2.2 and 131.8 +/- 2.5 mmHg, respectively). Serum aldosterone levels were normal, indicating that extracellular fluid-volume homeostasis was not impaired. Studies using pressure transducers in the femoral artery and left ventricle showed that anesthetized Nkcc1(-/-) mice have decreased mean arterial pressure and left ventricular pressure, whereas myocardial contraction parameters were not significantly different from those of Nkcc1(+/+) mice. When stimulated with phenylephrine, aortic smooth muscle from Nkcc1(+/+) and Nkcc1(-/-) mice exhibited no significant differences in maximum contractility and only moderate dose-response shifts. In phasic portal vein smooth muscle from Nkcc1(-/-) mice, however, a sharp reduction in mechanical force was noted. These results indicate that NKCC1 can be important for the maintenance of normal blood pressure and vascular tone.


Asunto(s)
Presión Sanguínea/fisiología , Hipotensión/fisiopatología , Músculo Liso Vascular/fisiología , Simportadores de Cloruro de Sodio-Potasio/genética , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Equilibrio Ácido-Base/fisiología , Aldosterona/sangre , Animales , Bumetanida/farmacología , Diuréticos/farmacología , Electrólitos/sangre , Hipotensión/metabolismo , Ratones , Ratones Noqueados , Tono Muscular/efectos de los fármacos , Tono Muscular/fisiología , Fenotipo , Miembro 2 de la Familia de Transportadores de Soluto 12 , Estrés Mecánico , Cola (estructura animal)
8.
J Biol Chem ; 277(49): 47399-406, 2002 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-12221084

RESUMEN

The outermost epidermal layer, the stratum corneum (SC), exhibits an acidic surface pH, whereas the pH at its base approaches neutrality. NHE1 is the only Na(+)/H(+) antiporter isoform in keratinocytes and epidermis, and has been shown to regulate intracellular pH. We now demonstrate a novel function for NHE1, as we find that it also controls acidification of extracellular "microdomains" in the SC that are essential for activation of pH-sensitive enzymes and the formation of the epidermal permeability barrier. NHE1 expression in epidermis is most pronounced in granular cell layers, and although the surface pH of NHE1 knockout mice is only slightly more alkaline than normal using conventional pH measurements, a more sensitive method, fluorescence lifetime imaging, demonstrates that the acidic intercellular domains at the surface and of the lower SC disappear in NHE1 -/- animals. Fluorescence lifetime imaging studies also reveal that SC acidification does not occur through a uniform gradient, but through the progressive accumulation of acidic microdomains. These findings not only visualize the spatial distribution of the SC pH gradient, but also demonstrate a role for NHE1 in the generation of acidic extracellular domains of the lower SC, thus providing the acidification of deep SC interstices necessary for lipid processing and barrier homeostasis.


Asunto(s)
Epidermis/metabolismo , Intercambiadores de Sodio-Hidrógeno/fisiología , Animales , Epidermis/fisiología , Epidermis/ultraestructura , Concentración de Iones de Hidrógeno , Inmunohistoquímica , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Pelados , Ratones Noqueados , Microscopía Fluorescente , Permeabilidad , Fotones , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA