Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sol Phys ; 298(6): 78, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325237

RESUMEN

The middle corona, the region roughly spanning heliocentric distances from 1.5 to 6 solar radii, encompasses almost all of the influential physical transitions and processes that govern the behavior of coronal outflow into the heliosphere. The solar wind, eruptions, and flows pass through the region, and they are shaped by it. Importantly, the region also modulates inflow from above that can drive dynamic changes at lower heights in the inner corona. Consequently, the middle corona is essential for comprehensively connecting the corona to the heliosphere and for developing corresponding global models. Nonetheless, because it is challenging to observe, the region has been poorly studied by both major solar remote-sensing and in-situ missions and instruments, extending back to the Solar and Heliospheric Observatory (SOHO) era. Thanks to recent advances in instrumentation, observational processing techniques, and a realization of the importance of the region, interest in the middle corona has increased. Although the region cannot be intrinsically separated from other regions of the solar atmosphere, there has emerged a need to define the region in terms of its location and extension in the solar atmosphere, its composition, the physical transitions that it covers, and the underlying physics believed to shape the region. This article aims to define the middle corona, its physical characteristics, and give an overview of the processes that occur there.

2.
Sol Phys ; 297(10): 141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36310545

RESUMEN

The High Resolution Imager (HRIEUV) telescope of the Extreme Ultraviolet Imager (EUI) instrument onboard Solar Orbiter has observed EUV brightenings, so-called campfires, as fine-scale structures at coronal temperatures. The goal of this paper is to compare the basic geometrical (size, orientation) and physical (intensity, lifetime) properties of the EUV brightenings with regions of energy dissipation in a nonpotential coronal magnetic-field simulation. In the simulation, HMI line-of-sight magnetograms are used as input to drive the evolution of solar coronal magnetic fields and energy dissipation. We applied an automatic EUV-brightening detection method to EUV images obtained on 30 May 2020 by the HRIEUV telescope. We applied the same detection method to the simulated energy dissipation maps from the nonpotential simulation to detect simulated brightenings. We detected EUV brightenings with a density of 1.41 × 10 - 3 brightenings/Mm2 in the EUI observations and simulated brightenings between 2.76 × 10 - 2 - 4.14 × 10 - 2 brightenings/Mm2 in the simulation, for the same time range. Although significantly more brightenings were produced in the simulations, the results show similar distributions of the key geometrical and physical properties of the observed and simulated brightenings. We conclude that the nonpotential simulation can successfully reproduce statistically the characteristic properties of the EUV brightenings (typically with more than 85% similarity); only the duration of the events is significantly different between observations and simulation. Further investigations based on high-cadence and high-resolution magnetograms from Solar Orbiter are under consideration to improve the agreement between observation and simulation.

3.
Sol Phys ; 295(7): 101, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32801397

RESUMEN

The large field-of-view of the Sun Watcher using Active Pixel System detector and Image Processing (SWAP) instrument onboard the PRoject for Onboard Autonomy 2 (PROBA2) spacecraft provides a unique opportunity to study extended coronal structures observed in the EUV in conjunction with global coronal magnetic field simulations. A global non-potential magnetic field model is used to simulate the evolution of the global corona from 1 September 2014 to 31 March 2015, driven by newly emerging bipolar active regions determined from Helioseismic and Magnetic Imager (HMI) magnetograms. We compare the large-scale structure of the simulated magnetic field with structures seen off-limb in SWAP EUV observations. In particular, we investigate how successful the model is in reproducing regions of closed and open structures, the scale of structures, and compare the evolution of a coronal fan observed over several rotations. The model is found to accurately reproduce observed large-scale, off-limb structures. When discrepancies do arise they mainly occur off the east solar limb due to active regions emerging on the far side of the Sun, which cannot be incorporated into the model until they are observed on the Earth-facing side. When such "late" active region emergences are incorporated into the model, we find that the simulated corona self-corrects within a few days, so that simulated structures off the west limb more closely match what is observed. Where the model is less successful, we consider how this may be addressed, through model developments or additional observational products. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11207-020-01668-2) contains supplementary material, which is available to authorized users.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...