Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-24303327

RESUMEN

The use of NextGen Sequencing clinically necessitates the need for informatics tools that support the complete workflow from sample accessioning to data analysis and reporting. To address this need we have developed Clinical Genomicist Workstation (CGW). CGW is a secure, n-tiered application where web browser submits requests to application servers that persist the data in a relational database. CGW is used by Washington University Genomic and Pathology Services for clinical genomic testing of many cancers. CGW has been used to accession, analyze and sign out over 409 cases since November, 2011. There are 22 ordering oncologists and 7 clinical genomicists that use the CGW. In summary, CGW a 'soup-to-nuts' solution to track, analyze, interpret, and report clinical genomic diagnostic tests.

2.
Proc Natl Acad Sci U S A ; 103(15): 5977-82, 2006 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-16585510

RESUMEN

Escherichia coli is a model laboratory bacterium, a species that is widely distributed in the environment, as well as a mutualist and pathogen in its human hosts. As such, E. coli represents an attractive organism to study how environment impacts microbial genome structure and function. Uropathogenic E. coli (UPEC) must adapt to life in several microbial communities in the human body, and has a complex life cycle in the bladder when it causes acute or recurrent urinary tract infection (UTI). Several studies designed to identify virulence factors have focused on genes that are uniquely represented in UPEC strains, whereas the role of genes that are common to all E. coli has received much less attention. Here we describe the complete 5,065,741-bp genome sequence of a UPEC strain recovered from a patient with an acute bladder infection and compare it with six other finished E. coli genome sequences. We searched 3,470 ortholog sets for genes that are under positive selection only in UPEC strains. Our maximum likelihood-based analysis yielded 29 genes involved in various aspects of cell surface structure, DNA metabolism, nutrient acquisition, and UTI. These results were validated by resequencing a subset of the 29 genes in a panel of 50 urinary, periurethral, and rectal E. coli isolates from patients with UTI. These studies outline a computational approach that may be broadly applicable for studying strain-specific adaptation and pathogenesis in other bacteria.


Asunto(s)
Infecciones por Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/patogenicidad , Infecciones Urinarias/microbiología , Cromosomas Bacterianos , Escherichia coli/clasificación , Genoma Bacteriano , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Recombinación Genética , Selección Genética
3.
Genome Res ; 14(12): 2503-9, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15574829

RESUMEN

The sequence of any genome becomes most useful for biological experimentation when a complete and accurate gene set is available. Gene prediction programs offer an efficient way to generate an automated gene set. Manual annotation, when performed by experienced annotators, is more accurate and complete than automated annotation. However, it is a laborious and expensive process, and by its nature, introduces a degree of variability not found with automated annotation. EAnnot (Electronic Annotation) is a program originally developed for manually annotating the human genome. It combines the latest bioinformatics tools to extract and analyze a wide range of publicly available data in order to achieve fast and reliable automatic gene prediction and annotation. EAnnot builds gene models based on mRNA, EST, and protein alignments to genomic sequence, attaches supporting evidence to the corresponding genes, identifies pseudogenes, and locates poly(A) sites and signals. Here, we compare manual annotation of human chromosome 6 with annotation performed by EAnnot in order to assess the latter's accuracy. EAnnot can readily be applied to manual annotation of other eukaryotic genomes and can be used to rapidly obtain an automated gene set.


Asunto(s)
Algoritmos , Cromosomas Humanos Par 6/genética , Biología Computacional/métodos , Genoma , Genómica/métodos , Secuencia de Bases , Humanos , Modelos Genéticos , Sensibilidad y Especificidad , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA