Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chaos ; 32(4): 043126, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35489870

RESUMEN

The identification of regions of similar climatological behavior can be utilized for the discovery of spatial relationships over long-range scales, including teleconnections. Additionally, it provides insights for the improvement of corresponding interaction processes in general circulation models. In this regard, the global picture of the interdependence patterns of extreme-rainfall events (EREs) still needs to be further explored. To this end, we propose a top-down complex-network-based clustering workflow, with the combination of consensus clustering and mutual correspondences. Consensus clustering provides a reliable community structure under each dataset, while mutual correspondences build a matching relationship between different community structures obtained from different datasets. This approach ensures the robustness of the identified structures when multiple datasets are available. By applying it simultaneously to two satellite-derived precipitation datasets, we identify consistent synchronized structures of EREs around the globe, during boreal summer. Two of them show independent spatiotemporal characteristics, uncovering the primary compositions of different monsoon systems. They explicitly manifest the primary intraseasonal variability in the context of the global monsoon, in particular, the "monsoon jump" over both East Asia and West Africa and the mid-summer drought over Central America and southern Mexico. Through a case study related to the Asian summer monsoon, we verify that the intraseasonal changes of upper-level atmospheric conditions are preserved by significant connections within the global synchronization structure. Our work advances network-based clustering methodology for (i) decoding the spatiotemporal configuration of interdependence patterns of natural variability and for (ii) the intercomparison of these patterns, especially regarding their spatial distributions over different datasets.

2.
Datenbank Spektrum ; 21(3): 255-260, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34786019

RESUMEN

Today's scientific data analysis very often requires complex Data Analysis Workflows (DAWs) executed over distributed computational infrastructures, e.g., clusters. Much research effort is devoted to the tuning and performance optimization of specific workflows for specific clusters. However, an arguably even more important problem for accelerating research is the reduction of development, adaptation, and maintenance times of DAWs. We describe the design and setup of the Collaborative Research Center (CRC) 1404 "FONDA -- Foundations of Workflows for Large-Scale Scientific Data Analysis", in which roughly 50 researchers jointly investigate new technologies, algorithms, and models to increase the portability, adaptability, and dependability of DAWs executed over distributed infrastructures. We describe the motivation behind our project, explain its underlying core concepts, introduce FONDA's internal structure, and sketch our vision for the future of workflow-based scientific data analysis. We also describe some lessons learned during the "making of" a CRC in Computer Science with strong interdisciplinary components, with the aim to foster similar endeavors.

3.
J Chem Theory Comput ; 17(3): 1355-1367, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33591754

RESUMEN

Quantum-chemical fragmentation methods offer an efficient approach for the treatment of large proteins, in particular if local target quantities such as protein-ligand interaction energies, enzymatic reaction energies, or spectroscopic properties of embedded chromophores are sought. However, the accuracy that is achievable for such local target quantities intricately depends on how the protein is partitioned into smaller fragments. While the commonly employed naïve approach of using fragments with a fixed size is widely used, it can result in large and unpredictable errors when varying the fragment size. Here, we present a systematic partitioning scheme that aims at minimizing the fragmentation error of a local target quantity for a given maximum fragment size. To this end, we construct a weighted graph representation of the protein, in which the amino acids constitute the nodes. These nodes are connected by edges weighted with an estimate for the fragmentation error that is expected when cutting this edge. This allows us to employ graph partitioning algorithms provided by computer science to determine near-optimal partitions of the protein. We apply this scheme to a test set of six proteins representing various prototypical applications of quantum-chemical fragmentation methods using a simplified molecular fractionation with conjugate caps (MFCC) approach with hydrogen caps. We show that our graph-based scheme consistently improves upon the naïve approach.


Asunto(s)
Algoritmos , Proteínas/química , Teoría Cuántica , Modelos Moleculares
4.
Bioinformatics ; 35(24): 5337-5338, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31329240

RESUMEN

SUMMARY: The distance geometry problem is often encountered in molecular biology and the life sciences at large, as a host of experimental methods produce ambiguous and noisy distance data. In this note, we present diSTruct; an adaptation of the generic MaxEnt-Stress graph drawing algorithm to the domain of biological macromolecules. diSTruct is fast, provides reliable structural models even from incomplete or noisy distance data and integrates access to graph analysis tools. AVAILABILITY AND IMPLEMENTATION: diSTruct is written in C++, Cython and Python 3. It is available from https://github.com/KIT-MBS/distruct.git or in the Python package index under the MIT license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Programas Informáticos , Algoritmos , Biología Molecular
5.
IEEE Trans Vis Comput Graph ; 24(5): 1814-1827, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28368821

RESUMEN

Drawing large graphs appropriately is an important step for the visual analysis of data from real-world networks. Here we present a novel multilevel algorithm to compute a graph layout with respect to the maxent-stress metric proposed by Gansner et al. (2013) that combines layout stress and entropy. As opposed to previous work, we do not solve the resulting linear systems of the maxent-stress metric with a typical numerical solver. Instead we use a simple local iterative scheme within a multilevel approach. To accelerate local optimization, we approximate long-range forces and use shared-memory parallelism. Our experiments validate the high potential of our approach, which is particularly appealing for dynamic graphs. In comparison to the previously best maxent-stress optimizer, which is sequential, our parallel implementation is on average 30 times faster already for static graphs (and still faster if executed on a single thread) while producing a comparable solution quality.

6.
Appl Netw Sci ; 2(1): 36, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30533515

RESUMEN

Research on generative models plays a central role in the emerging field of network science, studying how statistical patterns found in real networks could be generated by formal rules. Output from these generative models is then the basis for designing and evaluating computational methods on networks including verification and simulation studies. During the last two decades, a variety of models has been proposed with an ultimate goal of achieving comprehensive realism for the generated networks. In this study, we (a) introduce a new generator, termed ReCoN; (b) explore how ReCoN and some existing models can be fitted to an original network to produce a structurally similar replica, (c) use ReCoN to produce networks much larger than the original exemplar, and finally (d) discuss open problems and promising research directions. In a comparative experimental study, we find that ReCoN is often superior to many other state-of-the-art network generation methods. We argue that ReCoN is a scalable and effective tool for modeling a given network while preserving important properties at both micro- and macroscopic scales, and for scaling the exemplar data by orders of magnitude in size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA