Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 13(1)2022 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-35052496

RESUMEN

Drought, ultraviolet-B (UV-B), and nitrogen stress are significant constraints for sweetpotato productivity. Their impact on plant growth and development can be acute, resulting in low productivity. Identifying phenotypes that govern stress tolerance in sweetpotatoes is highly desirable to develop elite cultivars with better yield. Ten sweetpotato cultivars were grown under nonstress (100% replacement of evapotranspiration (ET)), drought-stress (50% replacement of ET), UV-B (10 kJ), and low-nitrogen (20% LN) conditions. Various shoot and root morphological, physiological, and gas-exchange traits were measured at the early stage of the crop growth to assess its performance and association with the storage root number. All three stress factors caused significant changes in the physiological and root- and shoot-related traits. Drought stress reduced most shoot developmental traits (29%) to maintain root growth. UV-B stress increased the accumulation of plant pigments and decreased the photosynthetic rate. Low-nitrogen treatment decreased shoot growth (11%) and increased the root traits (18%). The highly stable and productive cultivars under all four treatments were identified using multitrait stability index analysis and weighted average of absolute scores (WAASB) analyses. Further, based on the total stress response indices, 'Evangeline', 'O'Henry', and 'Beauregard B-14' were identified as vigorous under drought; 'Evangeline', 'Orleans', and 'Covington' under UV-B; and 'Bonita', 'Orleans', and 'Beauregard B-14' cultivars showed greater tolerance to low nitrogen. The cultivars 'Vardaman' and 'NC05-198' recorded a low tolerance index across stress treatments. This information could help determine which plant phenotypes are desirable under stress treatment for better productivity. The cultivars identified as tolerant, sensitive, and well-adapted within and across stress treatments can be used as source materials for abiotic stress tolerance breeding programs.


Asunto(s)
Sequías , Ipomoea batatas/crecimiento & desarrollo , Nitrógeno/deficiencia , Hojas de la Planta/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Estrés Fisiológico , Rayos Ultravioleta/efectos adversos , Adaptación Fisiológica , Ipomoea batatas/metabolismo , Ipomoea batatas/efectos de la radiación , Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de la radiación , Estaciones del Año
2.
Front Genet ; 13: 1080125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685929

RESUMEN

Plants are sensitive to changes projected in climates, such as elevated carbon dioxide (eCO2), high temperature (T), and drought stress (DS), which affect crop growth, development, and yield. These stresses, either alone or in combination, affect all aspects of sweetpotato plant growth and development, including storage root development and yield. We tested three sweetpotato cultivars (Beauregard, Hatteras, and LA1188) responses to eight treatments (Control, DS, T, eCO2, DS + T, T + eCO2, DS + eCO2, DS + T + eCO2). All treatments were imposed 36 days after transplanting (DAP) and continued for 47 days. Treatments substantially affected gas exchange, photosynthetic pigments, growth, and storage root components. Cultivars differed considerably for many of the measured parameters. The most significant negative impact of DS was recorded for the shoot and root weights. The combination of DS + T had a significant negative effect on storage root parameters. eCO2 alleviated some of the damaging effects of DS and high T in sweetpotato. For instance, eCO2 alone or combined with DS increased the storage root weights by 22% or 42% across all three cultivars, respectively. Based on the stress response index, cultivar "Hatteras" was most tolerant to individual and interactive stresses, and "LA 1188" was sensitive. Our findings suggest that eCO2 negates the negative impact of T or DS on the growth and yield of sweetpotato. We identified a set of individual and interactive stress-tolerant traits that can help select stress cultivars or breed new lines for future environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA