Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Res ; 1821: 148583, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37717889

RESUMEN

Prolonged microgravity exposure causes cognitive impairment. Evidence shows that oxidative stress and neuroinflammation are involved in the causation. Here, we explore the effectiveness of transcranial near-infrared photobiomodulation (PBM) on cognitive deficits in a mouse model of simulated microgravity. 24 adult male C57BL/6 mice were assigned into three groups (8 in each); control, hindlimb unloading (HU), and HU + PBM groups. After surgery to fit the suspension fixing, the animals were housed either in HU cages or in their normal cage for 14 days. The mice in the HU + PBM group received PBM (810 nm laser, 10 Hz, 8 J/cm2) once per day for 14 days. Spatial learning and memory were assessed in the Lashley III maze and hippocampus tissue samples were collected to assess oxidative stress markers and protein expression of brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), Sirtuin 1 (Sirt1), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Behavioral testing showed that the PBM-treated animals had a shorter latency time to find the target and fewer errors than the HU group. PBM decreased hippocampal lipid peroxidation while increasing antioxidant defense systems (glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to HU mice. PBM increased protein expression of Sirt1, Nrf2, and BDNF while decreasing NF-κB compared to HU mice. Our findings suggested that the protective effect of PBM against HU-induced cognitive impairment involved the activation of the Sirt1/Nrf2 signaling pathway, up-regulation of BDNF, and reduction of neuroinflammation and oxidative stress in the hippocampus.


Asunto(s)
Antioxidantes , Ingravidez , Ratones , Masculino , Animales , Antioxidantes/farmacología , Suspensión Trasera , Factor Neurotrófico Derivado del Encéfalo/metabolismo , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Sirtuina 1/metabolismo , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Estrés Oxidativo , Trastornos de la Memoria/metabolismo , Aprendizaje por Laberinto , Transducción de Señal , Hipocampo/metabolismo
2.
Lasers Med Sci ; 35(3): 573-584, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31372913

RESUMEN

The effectiveness of transcranial photobiomodulation (tPBM) and methylene Blue (MB) in treating learning and memory impairments is previously reported. In this study, we investigated the effect of tPBM and MB in combination or alone on unpredictable chronic mild stress (UCMS)-induced learning and memory impairments in mice. Fifty-five male BALB/c mice were randomly allocated to five groups: control, laser sham + normal saline (NS), tPBM + NS, laser sham + MB, and tPBM + MB. All groups except the control underwent UCMS and were treated simultaneously for 4 weeks. Elevated plus maze (EPM) was used to evaluate anxiety-like behaviors. Novel object recognition (NOR) test and Barnes maze tests were used to evaluate learning and memory function. The serum cortisol and brain nitric oxide (NO), reactive oxygen species (ROS), total antioxidant capacity (TAC), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels were measured by spectrophotometric methods. Behavioral tests revealed that UCMS impaired learning and memory, and treatment with PBM, MB, and their combination reversed these impairments. Levels of NO, ROS, SOD activity in brain, and serum cortisol levels significantly increased while brain GPx activity and total antioxidant capacity significantly decreased in the sham + NS animals when compared with the controls. A significant improvement was observed in treatment groups due to reversion of the aforementioned molecular analysis caused by UCMS when it was compared with control levels. Both tPBM and MB in combination or alone have significant therapeutic effects on learning and memory impairments in UCMS-received animals.


Asunto(s)
Conducta Animal/efectos de los fármacos , Conducta Animal/efectos de la radiación , Terapia por Luz de Baja Intensidad , Azul de Metileno/farmacología , Cráneo , Animales , Antioxidantes/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiología , Encéfalo/efectos de la radiación , Modelos Animales de Enfermedad , Glutatión Peroxidasa/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/efectos de la radiación , Memoria/efectos de los fármacos , Memoria/efectos de la radiación , Ratones , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/efectos de la radiación , Superóxido Dismutasa/metabolismo
3.
Photobiomodul Photomed Laser Surg ; 37(10): 596-605, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31335302

RESUMEN

Brain photobiomodulation (PBM) describes the use of visible to near-infrared light for modulation or stimulation of the central nervous system in both healthy individuals and diseased conditions. Although the transcranial approach to delivering light to the head is the most common technique to stimulate the brain, delivery of light to deeper structures in the brain is still a challenge. The science of nanoparticle engineering in combination with biophotonic excitation could provide a way to overcome this problem. Upconversion is an anti-Stokes process that is capable of transforming low energy photons that penetrate tissue well to higher energy photons with a greater biological effect, but poor tissue penetration. Wavelengths in the third optical window are optimal for light penetration into brain tissue, followed by windows II, IV, and I. The combination of trivalent lanthanide ions within a crystalline host provides a nanostructure that exhibits the upconversion phenomenon. Upconverting nanoparticles (UCNPs) have been successfully used in various medical fields. Their ability to cross the brain-blood barrier and their low toxicity make them a good candidate for application in brain disorders. It is possible that delivery of UCNPs to the brainstem or deeper parts of the cerebral tissue, followed by irradiation using light wavelengths with good tissue penetration properties, could allow more efficient PBM of the brain.


Asunto(s)
Encéfalo/efectos de la radiación , Elementos de la Serie de los Lantanoides/química , Terapia por Luz de Baja Intensidad/métodos , Nanopartículas/efectos de la radiación , Animales , Encéfalo/metabolismo , Femenino , Humanos , Elementos de la Serie de los Lantanoides/efectos de la radiación , Masculino , Nanopartículas/química , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA