Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Exp Pharmacol Physiol ; 41(5): 371-80, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24754528

RESUMEN

Extracellular single neuron recording and labelling studies of primary vestibular afferents in Scarpa's ganglion have shown that guinea-pig otolithic afferents with irregular resting discharge are preferentially activated by 500 Hz bone-conducted vibration (BCV) and many also by 500 Hz air-conducted sound (ACS) at low threshold and high sensitivity. Very few afferent neurons from any semicircular canal are activated by these stimuli and then only at high intensity. Tracing the origin of the activated neurons shows that these sensitive otolithic afferents originate mainly from a specialized region, the striola, of both the utricular and saccular maculae. This same 500 Hz BCV elicits vestibular-dependent eye movements in alert guinea-pigs and in healthy humans. These stimuli evoke myogenic potentials, vestibular-evoked myogenic potentials (VEMPs), which are used to test the function of the utricular and saccular maculae in human patients. Although utricular and saccular afferents can both be activated by BCV and ACS, the differential projection of utricular and saccular afferents to different muscle groups allows for differentiation of the function of these two sensory regions. The basic neural data support the conclusion that in human patients in response to brief 500 Hz BCV delivered to Fz (the midline of the forehead at the hairline), the cervical VEMP indicates predominantly saccular function and the ocular VEMP indicates predominantly utricular function. The neural, anatomical and behavioural evidence underpins clinical tests of otolith function in humans using sound and vibration.


Asunto(s)
Neuronas Aferentes/fisiología , Membrana Otolítica/inervación , Membrana Otolítica/fisiología , Potenciales Vestibulares Miogénicos Evocados/fisiología , Pruebas de Función Vestibular/métodos , Estimulación Acústica , Animales , Conducción Ósea/fisiología , Movimientos Oculares/fisiología , Cobayas , Humanos , Reflejo Vestibuloocular/fisiología , Sáculo y Utrículo/fisiología , Canales Semicirculares/fisiología , Vibración
2.
Ear Hear ; 34(6): 799-805, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23732683

RESUMEN

OBJECTIVES: The negative potential at 10 msec (called n10) of the ocular vestibular-evoked myogenic potential (oVEMP) recorded beneath the eyes in response to bone-conducted vibration (BCV) delivered to the skull at the midline in the hairline (Fz) is a new indicator of otolithic, and in particular utricular, function. Our aim is to find the optimum combination of frequency and rise-time for BCV stimulation, to improve the sensitivity of oVEMP testing in the clinic. DESIGN: We tested 10 healthy subjects with 6 msec tone bursts of BCV at three stimulus frequencies, 250, 500, and 750 Hz, at rise-times ranging between 0 and 2 msec. The BCV was delivered at Fz. RESULTS: The n10 response was significantly larger at the shorter rise-times, being largest at zero rise-time. In addition, we examined the effect of stimulus frequency in these same subjects by delivering 6 msec tone bursts at zero rise-time at a range of frequencies from 50 to 1200 Hz. The main effect of rise-time was significant with shorter rise-times leading to larger n10 responses and the Rise-Time × Frequency interaction was significant so that at low frequencies (100 Hz) shorter rise-times had a modest effect on n10 whereas at high frequencies (750 Hz) shorter rise-times increased n10 amplitude substantially. The main effect of frequency was also significant: The n10 response tended to be larger at lower frequency, being largest between 250 and 500 Hz. CONCLUSIONS: In summary, in this sample of healthy subjects, the most effective stimulus for eliciting oVEMP n10 to BCV at Fz was found to be a tone burst with a rise-time of 0 msec at low stimulus frequency (250 or 500 Hz).


Asunto(s)
Estimulación Acústica/métodos , Conducción Ósea/fisiología , Electromiografía/métodos , Potenciales Evocados Auditivos/fisiología , Membrana Otolítica/fisiología , Sáculo y Utrículo/fisiología , Adulto , Anciano , Análisis de Varianza , Femenino , Humanos , Masculino , Persona de Mediana Edad
3.
Vision Res ; 48(13): 1488-96, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18466947

RESUMEN

A recent study by Poljac et al. [Poljac, E., Lankheet, M. J. M., & van den Berg, A. (2005). Perceptual compensation for eye torsion. Vision Research, 45(4), 485-496] concluded that there was complete perceptual compensation for ocular torsion, although they did not directly measure ocular torsion. Using a similar eccentric-gaze paradigm to induce changes in torsion, which were directly measured, we found inconsistent torsional eye movements at eccentric fixation, and also failed to detect a significant relationship between ocular torsion and the perception of line orientation. We then used a stimulus known to induce large changes in ocular torsion: on-centre yaw rotation. This stimulus induced a consistent change in the torsional position of the eye which positively correlated to subjects' visual perception of horizontal.


Asunto(s)
Movimientos Oculares/fisiología , Percepción Visual/fisiología , Adulto , Fijación Ocular/fisiología , Humanos , Persona de Mediana Edad , Orientación , Estimulación Luminosa/métodos , Reflejo Vestibuloocular/fisiología , Rotación
4.
Vision Res ; 44(4): 397-406, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14659966

RESUMEN

A large- or full-field visual stimulus slowly rotating around the naso-occipital axis of an observer causes both eyes to tort, and many of the factors controlling this optokinetic torsional response have been identified. The present study reports that a single line rotating about the line of sight can cause both eyes to tort in the same direction as the stimulus but with a low gain. We have used the term 'entrainment' to describe this torsional response. This paper reports some of the factors associated with entrainment. Video measures of 3-d eye position were recorded while the subject made settings of a simple visual line to subjective visual horizontal (SVH) and vertical (SVV) using the standard method-of-adjustment paradigm. The visual line was composed of 11 light-emitting diodes; the line subtended a visual angle of 19 degrees, and moved at a constant speed of 4.8 degrees /s. Settings were made in an otherwise darkened room, and also in the light. Subjects were required to maintain fixation of the central LED while making settings from starting positions 10 or 20 degrees either side of gravitational horizontal or vertical. We show that entrainment of ocular torsion by the single moving visual line is low in gain but a reliable and repeatable effect and that (1) there are considerable individual differences between subjects but within-subject consistency, (2) all subjects show larger and more consistent torsional entrainment for lines moving to SVH than lines moving to SVV, (3) the strongest entrainment generally occurs within about 10 degrees of the target position, and (4) entrainment is also present in the light, though with slightly reduced gain.


Asunto(s)
Adaptación Ocular , Movimientos Oculares/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mióticos/farmacología , Estimulación Luminosa , Pilocarpina/farmacología , Rotación , Anomalía Torsional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA